Newer Antiarrhythmic Drugs
What is on the horizon?

Steven R. Kayser, PharmD
Professor of Clinical Pharmacy
Department of Clinical Pharmacy
UCSF

“If antiarrhythmic drugs had adequate clinical efficacy and safety, there probably would never have been any rate versus rhythm control trials”

Albert Waldo, MD
Cleveland Clinic

Emerging AAD for AF
• Rate control
• Rhythm control
• Agents altering atrial substrate
• Anticoagulation
• Ablation may be the future, but…
 – Not indicated if age > 70
 – Only 10% of patients are candidates now

Nontraditional approaches to the management of atrial fibrillation
Potassium Channels and AADs

- Potassium channels in the heart determine heart rate, resting membrane potential, action potential shape and action potential duration (APD).
- Classified into voltage gated and ligand-gated.
- Voltage gated = transient outward current, I_{to}, delayed rectifier current I_{Kr}, inward rectifier I_{Ki}.
- Ligand-gated channels = I_{KATP} or acetylcholine I_{KACCH}.

I$_K$ can be divided into ultrarapid (I_{kur}), rapid (I_{kr}), and slow (I_{ks}) components.

Atrium has a greater density of repolarizing K+ currents, including I_{kur} which is functionally considered atrium specific.

I_{kur} is relatively insensitive to class III agents, including amiodarone, dofetilide, sotalol.

Why Not Amiodarone

- In rhythm control group amiodarone most frequently used drug.
- Increased non-cardiovascular death rate in group receiving amiodarone.
- Increased incidence of cancer, also seen in AVID, CAMIAT.
 - Only hypothesis generating.
Dronedarone-SR33589

- Inhibits I_{kr}, I_{kat}, B_{1}, I_{Ca} (L-type), I_{to}
- Lacks iodine moiety
- No thyroid or pulmonary toxicity
- Similar electrophysiology to amiodarone
- Half-life = 24 h, dose BID
- Food increases levels 2-3 x
- Undergoes 1st pass metabolism, ~ 15% Available

Circulation 1999;100:2276

Multichannel blocking effects

<table>
<thead>
<tr>
<th>Guinea Pig (IC50, uM)</th>
<th>Dronedarone</th>
<th>Amiodarone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outward currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{kr} (ventricle)</td>
<td>2-3</td>
<td>10</td>
</tr>
<tr>
<td>I_{ks} (ventricle)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>I_{kr} (ventricle)</td>
<td>>30</td>
<td>≤30</td>
</tr>
<tr>
<td>I_{kACh} (atrium)</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>Inward currents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{Na} (human; 3uM)</td>
<td>-97%</td>
<td>-41%</td>
</tr>
<tr>
<td>I_{Ca-L} (guinea pig; 50 uM)</td>
<td>0.2</td>
<td>10</td>
</tr>
</tbody>
</table>

J Cardiovasc Electrophysiol 2006;17:S17-S20
Dronedarone-SR33589

- Antagonist of α and β receptors
- No significant effect on plasma levels of T3, T4, rT3.
- Fewer drug-drug interactions

J Cardiovasc Electrophysiol 2006;17(Suppl 2):S17-S20

Dronedarone-Clinical Trials

- **DAFNE** - Dronedarone Atrial Fibrillation study aFter Electrical cardioversion
 - Persistent AF, RRR 55% of reversion to AF
- **EURIDIS** - EUropean trial in atrial fibrillation or flutter patients Receiving Dronedarone for the maintenance of Sinus rhythm
- **ADONIS** - American-Australian-African Trial with Dronedarone in Atrial Fibrillation/Flutter Patients for the Maintenance of Sinus Rhythm

ERUDIS/ADONIS

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Hazard Ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause hosp/death</td>
<td>0.73</td>
<td>0.001</td>
</tr>
<tr>
<td>CV Hosp/death</td>
<td>0.80</td>
<td>0.16</td>
</tr>
<tr>
<td>Hosp for AF/Afl</td>
<td>0.71</td>
<td>0.055</td>
</tr>
<tr>
<td>CV hosp excl AF/Afl</td>
<td>1.06</td>
<td>0.80</td>
</tr>
</tbody>
</table>

* Decreased in overall risk of recurrence of AF/Afl and time to recurrence (20-30%), in patients who resumed the VR was significantly lower, incidence of SE = placebo, no TdP, no thyroid or pulmonary toxicities. Overall recurrence rates were 65% for EURIDIS

EURIDIS/ADONIS Pooled data

<table>
<thead>
<tr>
<th>Incidence of treatment emergent ADEs(%)</th>
<th>Placebo (n=409) %</th>
<th>Dronedarone* 800 mg(n=828) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>62.8</td>
<td>67.4</td>
</tr>
<tr>
<td>Any serious ADE</td>
<td>15.6</td>
<td>14.3</td>
</tr>
<tr>
<td>Deaths</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Permanent drug DC following ADE</td>
<td>6.1</td>
<td>9.7</td>
</tr>
</tbody>
</table>

*No TdP, thyroid, hepatic or pulmonary side effects
EURIDIS/ADONIS

- A significant and consistent ↓ VR @ 1st AF/AFl recurrence (116.6 v 104.6; 117.5 v 102.3)
- A significant and consistent ↓ 1st recurrence of AF/Afi
- Significant and consistent reduction in symptomatic recurrence

Dronedarone-Clinical Trials

- ERATO-Efficacy and Safety of Dronedarone for the Control of Ventricular Rate during Atrial Fibrillation (↓ VR with rest and exercise)
- ATHENA-A Placebo Controlled Trial to Assess the Efficacy of Dronedarone 400 mg bid for the Prevention of CV hospitalizations or Death from any Cause in Patients with AF/Atrial Flutter
- ANDROMEDA-Antiarrhythmic Trial with Dronedarone in Moderate-To-Severe Congestive Heart Failure Evaluating Morbidity Decrease-terminated early due to ↑ mortality

ANDROMEDA

- Assess benefit of donedarone in ↓ mortality from HF hosp (class III, IV)
- Confirm absence of ADE
- ↑ RR 1.38
- Not superior to placebo
- Mortality d/t non sudden death
- Inc death due to DC ACEI/ARB with ↑ Scr
- ATHENA is new morbidity/mortality study

Dronedarone-Conclusions

- Better tolerated
- Fewer drug drug interactions
- Increase in serum creatinine due to secretion/reabsorption, not due to ↓ GFR
Atrial specific AADs

- Little to no role in ventricular physiology
- Act on more than atrial channel
- Some species have different channel expression in R v L atria
- Atrial properties may change with remodeling, may be different when in NSR
- Clinical focus may be pharmacologic cardioversion, prevention, ideal if IV/po

Atrial Specific AADs

- RSD1235
- AVE0118
- AVE1231
- AZD 7009
- C9356
- NIP142
- MPS
- JTV519
- S1185
- Azimilide
- AT12042
- Piboserod-5HT4 receptor antagonist
- Tediasamii
- ZP123 (GAP486)-rotigaptide, a gap junction modifier
- GSMb4 (SAC blocker)

Emerging I_{kur} Blockers or Atrial-Specific Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Block</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSD1235</td>
<td>$I_{kur} + I_{na}$</td>
<td>Cardiome</td>
</tr>
<tr>
<td>C9356</td>
<td>I_{kur}</td>
<td>Cardiome</td>
</tr>
<tr>
<td>NIP142</td>
<td>$I_{kur} + I_{KACH}$</td>
<td>Nissan Chem</td>
</tr>
<tr>
<td>AZD7009</td>
<td>$I_{kur} + I_{Na} + I_{Kr}$</td>
<td>AstraZeneca</td>
</tr>
<tr>
<td>AVE0118</td>
<td>$I_{kur} + I_{to} + I_{KACH}$</td>
<td>Aventis</td>
</tr>
<tr>
<td>S9947-S20951</td>
<td>I_{kur}</td>
<td>Aventis</td>
</tr>
<tr>
<td>S0100176</td>
<td>I_{kur}</td>
<td>Aventis</td>
</tr>
</tbody>
</table>

RSD1235

- Mixed frequency-dependent Na+ channel and atrial preferential K+ channel blocker
- Blocks I_{kur}, I_{to}, I_{KACH}
- Prolongs atrial refractoriness, no significant effects on ventricles or QT
- Mean T ½ = 3.1 hours
- Available IV and orally
RSD1235

- No drug related proarrhythmias
- No adverse hemodynamic effects
- 56% conversion rate within 2 h
- Small sample size, requires confirmation

Cumulative percentage of patients terminating atrial fibrillation (AF) after infusions of placebo, 0.5 and 1.0 mg/kg RSD1235, or 2.0 and 3.0 mg/kg RSD1235 in patients with recent onset AF. Efficacy was significantly higher after 2 + 3 mg/kg RSD1235 than after placebo (p = 0.0003) and was significantly different between the two RSD1235 (p = 0.002) dosing regimens. The median time for termination of AF was 11 min from the start of the first infusion in the RSD1235 treatment groups. (JACC Volume 44, 2004, Pages 2355-2361)

RSD1235

- Studies versus placebo ACT1
 - Conversion of recent AF, 52% v 4%
 - Conversion of all AF (3 h-45d), 38% v 3%
 - Ineffective for AFI
 - Potentially serious ADEs 1.4% v 0%

AVE0118

- Blocks I_{Kur}, I_{to}
- Prolongs atrial ERP L > R
- No effect on VERP
- Increases atrial APD with + inotropic effects on the atria

Circulation 2006;114:1234-42
ZP123-Rotigaptide
Guerra JM, Everett TH, Lee KW and Olgin JE, Circulation 2006;114:110-8

• Gap junction enhancer
• Selective for atrial electrophysiology
• Derivative of naturally occurring antiarrhythmic peptide that improves cell coupling
• ↓ AF vulnerability in MR but not HF

Tedisamil

• Class III antiarrhythmic
• Blocks multiple K channels and slows SR
• Blocks I_{to}, I_{KATP}, I_{Kr}, I_{Ks}, I_{kur}
• Prolongs APD atria > ventricles
• Excreted by the kidney
• T ½ 8-13 hours
• Has significant anti-anginal, anti-ischemic properties
Azimilide (A-COMET-1)
Azimilide-Cardioversion Maintenance Trial-1

- Class III antiarrhythmic drug
- Blocks I_{Kr} and I_{Ks}
- Patients with structural heart disease who converted to sinus
- NS difference in rate of recurrence compared with placebo

Am Heart J 2006;151:1043-9

What's New-Antithrombotics

- Ximelagatran is OUT!
- Fondarinux - parenteral anti-Xa inhibitor
- Razaxaban - orally active FXa inhibitor
- Dabigatran - direct thrombin inhibitor
- Odiparcil - ß-D-xyloside, prime glycosaminoglycan (GAG) activity

New AADs-Summary

- Current AADs are limited by suboptimal efficacy, tolerance and safety
- These offset the benefits of NSR
- Traditional most effective class III drugs need to be started in hospital
- Other agents safer to start out of hospital if NSR
New AADs-Summary

- Need to consider the contribution of other drugs, e.g. ACEIs, ARBs, Statins, fish oils which have all been reported to influence incidence of AF
- Competition from AF ablation and AFFIRM rate control data decrease enthusiasm for new drug development

New AADs-Conclusion

- Atrial specific AADs are effective during atrial remodeling
- May be effective in immediate recurrence, early recurrence and in pharmacologic conversion of longer-standing AF
- Differential effects on L versus R atrium