Acute Myeloid Leukemia: Importance of Ancillary Studies in Diagnosis and Classification

Daniel A. Arber, MD
Professor and Associate Chair
Department of Pathology
Stanford University
Estimated Yearly Incidence of AML
Misconceptions Some Pathologists Have About AML

• Ruling out APL is all that is really important
• Flow cytometry is not helpful in most cases
• The clinician can correlate the pathology findings with cytogenetics, because they will not change the diagnosis
<table>
<thead>
<tr>
<th>Leukemia</th>
<th>Lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960’s</td>
<td>Rappaport</td>
</tr>
<tr>
<td>1976 FAB</td>
<td>1982</td>
</tr>
<tr>
<td>-1991</td>
<td>Working</td>
</tr>
<tr>
<td></td>
<td>Formulation</td>
</tr>
<tr>
<td></td>
<td>1994 REAL</td>
</tr>
<tr>
<td>2001 WHO</td>
<td>2001 WHO</td>
</tr>
</tbody>
</table>
What are the Significant Changes of the WHO Classification of AML?
What are the Significant Changes of the WHO Classification of AML?

- Lowered the blast cell count for acute leukemia
What are the Significant Changes of the WHO Classification of AML?

• Lowered the blast cell count for acute leukemia
• Began to introduce cytogenetics into the classification system
What are the Significant Changes of the WHO Classification of AML?

• Lowered the blast cell count for acute leukemia
• Began to introduce cytogenetics into the classification system
• Recognized the significance of multilineage dysplasia in AML
What are the Significant Changes of the WHO Classification of AML?

- Lowered the blast cell count for acute leukemia
- Began to introduce cytogenetics into the classification system
- Recognized the significance of multilineage dysplasia in AML
- Recognized the significance of prior therapy in AML and MDS
Blast Count in AML

- WHO lower the bone marrow (or blood) blast count for AML to 20% for most cases
- No blast cell minimum for cytogenetic subtypes
RAEBT vs. AML with Multilineage Dysplasia and ≥30% Blasts

Overall Survival

Survival Distribution Function

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Overall Survival (mo.)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 1 1 0 1 2 0 1 3 0

RAEBT (n=24)

AML, MLD or Therapy-related (n=113)

p = 0.5289

City of Hope Data
Cytogenetics in AML
Cytogenetics of Childhood AML

- **normal** 22.8%
- **-7** 1.9%
- **+8 alone** 2.1%
- **+21 alone** 1.5%
- **11q23** 18.4%
- **inv(16)/t(16;16)** 5.9%
- **miscellaneous** 18.6%
 - [one abnormal 7.5%]
 - [two/+ abnormal 11.1%]
- **t(8;21)** 11.7%
- **t(15;17)** 11.5%
- **t(1;22)(p13;q13)** 0.8%
- **t(6;9)(p23;q34)** 1.3%
- **t(10;11)(p13;q21)** 5.6%
- **t(3:5)(q25;q34)** 1.1%
- **t(8;16)(p11;p13)** 0.6%
- **Rare recurrent**
Cytogenetics of Adult AML

- Normal: 40%
- t(15;17): 10%
- inv(16)/t(16;16): 9%
- t(8;21): 8%
- 11q: 7%
- t(15;17): 10%
- Other: 32%

Other include:
- -5 / 5q-
- -7 / 7q-
- +8
- inv(3) / t(3;3)
- Abnormality 13q
- i(17q)
- Abnormality of 17p
- Abnormality of 20q
- Abnormality of 21q
- t(9;22)
- t(6;9)
- del (9q)
- Other trisomy
- -X
- -Y

Complex Karyotypes

SWOG Data
Recurring Cytogenetic Abnormalities in Adult AML

Survival Distribution Function

Overall Survival (mo.)

inv(16) AML (n=30)
t(15;17) AML (n=19)
t(8;21) AML (n=15)
11q23 AML (n=11)

p = 0.0245

Cytogenetic Risk Groups

<table>
<thead>
<tr>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(8;21)</td>
<td>Complex (>3) abnormalities</td>
</tr>
<tr>
<td>inv(16)/t(16;16)</td>
<td>-7</td>
</tr>
<tr>
<td>t(15;17)</td>
<td>inv(3q)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>del(9q) without t(8;21)</td>
</tr>
<tr>
<td>Normal karyotype</td>
<td>11q23, 17p, 20q or 21q</td>
</tr>
<tr>
<td>Single abnormalities</td>
<td>abnormalities</td>
</tr>
<tr>
<td>+8</td>
<td>t(9;22)</td>
</tr>
<tr>
<td>+11</td>
<td>t(6;9)</td>
</tr>
<tr>
<td>-Y</td>
<td>+13</td>
</tr>
<tr>
<td>12p abnormalities</td>
<td>dmin/hsrs</td>
</tr>
</tbody>
</table>
Pure Cytogenetic Classification of AML - Overall Survival

Survival Distribution Function

Overall Survival (mo.)

Low risk (n=69)
Intermediate risk (n=98)
High risk (n=62)

p < 0.0001

Multilineage Dysplasia in AML

- WHO defines as two or more cell lines with over 50% dysplasia
Overall Survival of Therapy and MDS-associated AML vs. Non-MDS AML

Survival Distribution Function

Non-MDS AML (n=187)
AML, MDS- or Therapy-related (n=113)

p < 0.0001

WHO Classification of Acute Myeloid Leukemia

- Acute myeloid leukemia with recurrent cytogenetic abnormalities
 - AML with t(8;21)(q22;q22), (AML1/ETO)
 - AML with inv(16)(p13q22) or t(16;16)(p13;q22), (CBFβ/MYH11)
 - Acute promyelocytic leukemia (AML with t(15;17)(q22;q12), (PML/RARα) and variants)
 - AML with 11q23 (MLL) abnormalities
Acute Myeloid Leukemia with t(8;21) (RUNX1/RUNX1T1)

- Characteristic blast cell morphology with perinuclear hofs, Auer rods and large salmon-colored granules
Acute Myeloid Leukemia with t(8;21)

- Characteristic blast cell morphology with perinuclear hofs, Auer rods and large salmon-colored granules
Acute Myeloid Leukemia with t(8;21)

CD13 and CD33 positive blast gate
Acute Myeloid Leukemia with t(8;21)

CD19 positive

CD34 positive, CD56 +/-
Acute Myeloid Leukemia with t(8;21)

- Characteristic immunophenotype of CD19+/myeloid antigen +/-CD34+ blast cells in two thirds of cases. A subset are also CD56+
- These morphologic and immunophenotypic features have a high correlation with t(8;21)(q22;q22) or RUNX1/RUNX1T1 fusion
- These cases should be diagnosed as AML without regard to blast cell count (so called “oligoblastic” acute leukemia)
Does CD19+ AML = t(8;21)?
Does CD19+ AML = t(8;21)?

- Adult AML
 - CD19+ in 10/102 cases (9.8%)

Does CD19+ AML = t(8;21)?

• Adult AML
 – CD19+ in 10/102 cases (9.8%)
 – Cytogenetics available on 7 of those 10

Does CD19+ AML = t(8;21)?

- Adult AML
 - CD19+ in 10/102 cases (9.8%)
 - Cytogenetics available on 7 of those 10
 - One (14%) of those 7 cases had t(8;21)

Acute Myeloid Leukemia with t(8;21)

- **Morphology**
 - Perinuclear hofs
 - Large pink cytoplasmic granules
 - Auer rods
 - Associated bone marrow eosinophilia

- **Immunophenotype**
 - Aberrant CD19 expression
 - CD34 expression
 - CD56 expression
CD13, CD33, CD34-positive with partial CD19 and CD56

DX: AML with features of t(8;21)
Acute Myeloid Leukemia with inv(16) or t(16;16) (CBFB/MYH11)

- Blast cell proliferation with or without monocytic differentiation by cytochemistry, with an associated proliferation of abnormal eosinophils
Acute Myeloid Leukemia with inv(16) or t(16;16)

- The eosinophils contain abnormal, basophilic granules
Acute Myeloid Leukemia with inv(16) or t(16;16)

- The cases express myeloid-associated antigens and may be CD2 positive, but there is no specific immunophenotype for this disease.
- These cases should be diagnosed as AML without regard to blast cell count.
Acute Myeloid Leukemia with inv(16) or t(16;16)

- **Morphology**
 - *Abnormal eosinophils*
 - Myelomonocytic morphology

- **Cytochemistry**
 - Non-specific esterase positive

- **Immunophenotype**
 - Aberrant CD2 expression
DX: AML with abnormal eosinophils, suggestive of inv(16) or t(16;16)
Acute Promyelocytic Leukemia

- Includes microgranular and other variants
- Blasts have folded nuclei with or without cytoplasmic granules and Auer rods
Acute Promyelocytic Leukemia

- Includes microgranular and other variants
- Blasts have folded nuclei with or without cytoplasmic granules and Auer rods
Acute Promyelocytic Leukemia

- Includes microgranular and other variants
- Blasts have folded nuclei with or without cytoplasmic granules and Auer rods
Acute Promyelocytic Leukemia

- Strong myeloperoxidase positivity
Acute Promyelocytic Leukemia

CD13 and CD33 positive
Acute Promyelocytic Leukemia

HLA-DR weak or negative
Acute Promyelocytic Leukemia

CD34 +/- CD64 +/- MPO +++
Acute Promyelocytic Leukemia

• Express myeloid-associated antigens with loss of HLA-DR in the majority of cases and often demonstrates CD2 expression
• These cases should be diagnosed as AML without regard to blast cell count
Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?
Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

- Adult AML
 - HLA-DR+: 2/7 APLs vs 88/99 other AMLs

Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

• Adult AML
 – HLA-DR+: 2/7 APLs vs 88/99 other AMLs
 – p <0.0001

Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

- Adult AML
 - HLA-DR negative in 16/106 (15.1%)

Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

- Adult AML
 - HLA-DR negative in 16/106 (15.1%)
 - t(15;17) was detected in only 5 of those 16 (31%)

Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

- Adult APL vs. other AML
 HLA-DR negative \(p < 0.0001 \)

Does HLA-DR-negative AML = Acute Promyelocytic Leukemia?

- Adult APL vs. other AML
 - HLA-DR negative \(p < 0.0001 \)
 - CD4 negative \(p = 0.0084 \)
 - CD11c negative \(p < 0.0001 \)
 - CD36 negative \(p = 0.0297 \)
 - CD117 negative \(p = 0.0422 \)
 - CD2 positive \(p = 0.0293 \)

Acute Promyelocytic Leukemia

- Morphology
 - *Bilobated nuclei*
 - *Abundant cytoplasmic granules*
 - Cells with numerous Auer rods

- Cytochemistry
 - *Strong MPO in every cell*

- Immunophenotype
 - *Lack of HLA-DR*
 - *Strong cMPO*
 - Aberrant CD2 expression
CD13, CD33, MPO (strong) positive, HLA-DR negative.
Acute Myeloid Leukemia with 11q23 \((MLL)\) Abnormalities

- Blast cell proliferation, usually with monocytic or myelomonocytic features
Acute Myeloid Leukemia with 11q23 (MLL) Abnormalities

- Blast cell proliferation, usually with monocytic or myelomonocytic features
- More common in children
- Frequently therapy-related when occurring in adults, although associated multilineage dysplasia is often no apparent
- No specific morphologic or immunophenotypic features
Acute Myeloid Leukemia with 11q23 (MLL) Abnormalities

CD34 negative CD56 +/- CD64 positive
Acute Myeloid Leukemia with 11q23 (MLL) Abnormalities

MPO negative

CD11c
Acute Myeloid Leukemia with 11q23 (MLL) Abnormalities

• Diagnostic criteria
Acute Myeloid Leukemia with 11q23 (MLL) Abnormalities

- Diagnostic criteria
WHO Classification of Acute Myeloid Leukemia

- Acute myeloid leukemia with multilineage dysplasia
- Acute myeloid leukemia and myelodysplastic syndrome, therapy related
 - Alkylating agent related
 - Topoisomerase II inhibitor-related

WHO Classification of Tumours, 2001
AML with Multilineage Dysplasia
AML with Multilineage Dysplasia
Therapy-Related AML/MDS

Alkylating agent-related

Topo-II inhibitor-related
WHO Classification of Acute Myeloid Leukemia

• Acute myeloid leukemia not otherwise categorized
 • AML, minimally differentiated
 • AML, without maturation
 • AML, with maturation
 • Acute myelomonocytic leukemia
 • Acute monoblastic and monocytic leukemia
 • Acute erythroid leukemia
 • Acute megakaryoblastic leukemia
 • Acute basophilic leukemia
 • Acute panmyelosis with myelofibrosis
 • Myeloid sarcoma

• Acute leukemias of ambiguous lineage
What else is there to know about AML?
What else is there to know about AML?

- What is erythroleukemia?
Acute Erythroid Leukemia

- FAB (M6) requires >50% bone marrow erythroid precursors and 30% or greater blasts (myeloblasts) in the non-erythroid cells
- WHO includes two types
 - M6-like except 20% or greater blasts
 - Pure erythroid leukemia; over 80% immature erythroid cells
- Other groups have described “M6C”
 - Over 30% erythroid cells in marrow and over 30% myeloblasts
Acute Erythroid Leukemia

- Almost always associated with dysplastic changes of other cell lines
- Complex cytogenetic abnormalities are usually present, similar to the myelodysplasias and the other MDS-associated acute myeloid leukemias
- Why aren’t these just cases of MDS or AML with multilineage dysplasia?
What else is there to know about AML?

- What is acute megakaryoblastic leukemia?
What else is there to know about AML?

- What is acute megakaryoblastic leukemia?

 An acute leukemia with blasts showing megakaryocytic features by immunophenotyping or platelet peroxidase electron microscopy
Acute Megakaryoblastic Leukemia

- Cytoplasmic blebs are common, but are not specific for this type of leukemia
- Commonly associated with marrow fibrosis
- Blasts are myeloperoxidase negative by cytochemistry, but may express myeloid-associated markers and should be positive for two megakaryocyte-associated markers (CD41, CD42, CD61, vWF, Ulex)
- Demonstration of platelet peroxidase by electron microscopy may also be helpful
Acute Megakaryoblastic Leukemia

Megakaryoblast

Non-Megakaryoblasts
Acute Megakaryoblastic Leukemia

Appear to be at least three types

- Adult type
 - Associated with multilineage dysplasia and MDS-like cytogenetic abnormalities
 - May be related to acute panmyelosis with myelofibrosis

- Childhood type
 - Associated with trisomy 21
 - Occurs at an older age (>2 yrs) than transient myeloproliferative disorder of Down Syndrome

- Infant type
 - Associated with t(1;22)
Acute Megakaryoblastic Leukemia with t(1;22)(p13;q13)

- Infant leukemia
- Nonspecific cytoplasmic blebs
- MPO negative; CD41, CD61 positive
- \textit{RBM15/MKL1 (OTT/MAL)} fusion
What else is there to know about AML?

- Other translocations
- Mutations
Recurrent Cytogenetic Abnormalities in AML with Multilineage Dysplasia

- Chromosome 5 and 7 abnormalities
- Complex karyotypes
- Balanced abnormalities
 - inv(3)(q21q26)/t(3;3)(q21;q26), *EVI1*
 - t(6;9)(23;q34), *DEK-CAN*
 - t(3;5)(q25;q31), *NPM-MLF1*
Mutations in AML

- *NPM1*
- *FLT3*
- *CEPBA*
- *MLL*
- *CKIT*

Mutations in AML

- **FLT3**
 - Mutations occur in 10-15% of childhood AMLs and 20-28% of adult AMLs
 - More frequent in APL, normal karyotype AML or t(6;9) AML
 - Mutation associated with decreased disease free survival in adults
 - Clinical trials with FLT3 inhibitors are underway

FLT3 Mutations

Internal Tandem Duplications (ITD)

Point Mutations (D835)
Significance of \textit{FLT3} Mutations in Adult AML with Normal Karyotypes
Mutations in AML

• *NPM1*
 – 25-30% of all AMLs
 – Up to half of AMLs with normal karyotypes
 – Women, high WBC and Plt counts
 – Mutated *NPM1* associated with a good prognosis unless associated with a *FLT3* mutation

NPM1 Mutations
NPM1 Mutations

Mutations in AML

• *CEPBA*
 – Mutations occur in 7-11% of AMLs
 – Mutations associated with a favorable prognosis, unless accompanied by a *FLT3* mutation

Preudhomme et al. *Blood* 100:2717, 2002
Mutations in AML

- **KIT**
 - Mutations occur in 22-30% of AMLs with t(8;21) and inv(16)
 - Involve exon 17 (usually D816V) or exon 8
 - Mutations in these disease groups associated with a worse prognosis

AML Classification

- AML with Recurring Genetic Abnormalities
- AML, Myelodysplasia-Related
- AML, Therapy-Related
- AML, NOS
AML Classification

• AML with Recurring Genetic Abnormalities
 – AML with t(8;21)
 – AML with inv(16)
 – AML with t(15;17)
 – AML with t(9;11)
 – AML with t(1;22)
 – AML with t(9;22)
 – AML with NPM1 mutations
 – AML with CEPBA mutations

• AML, Myelodysplasia-Related
• AML, Therapy-Related
• AML, NOS
AML Classification

• AML with Recurring Genetic Abnormalities
• AML, Myelodysplasia-Related
 – AML following MDS
 – AML with multilineage dysplasia
 – AML with MDS-related cytogenetics
• AML, Therapy-Related
• AML, NOS
AML Classification

- AML with Recurring Genetic Abnormalities
- AML, Myelodysplasia-Related
- AML, Therapy-Related
- AML, NOS
Summary

- A combined morphologic, immunophenotypic and genetic approach is necessary for the accurate classification of AML and allows for identification of prognostically significant diseases types.
- The ongoing discovery of genetic subtypes of AML will impact future classification and therapy.