Myelodysplastic Syndromes: Everyday Challenges and Pitfalls

Kathryn Foucar, MD
kfoucar@salud.unm.edu
Henry Moon lecture
May 2007
Outline

• Definition
• Conceptual overview; pathophysiologic mechanisms
• Incidence, epidemiologic features
• Diagnostic tools and strategies
• Diagnostic challenges
• Practical approach/key tips
MDS: Definition

- Acquired clonal HP neoplasm, stem cell-derived
- Maturation of hematopoietic lineages intact, but inadequate overall cell production → cytopenias
- Blast count normal to increased (< 20%)
- Increased risk of leukemic transformation (loss of maturation)
MDS: Incidence

• Primarily disease of elderly; can occur at all ages
• 40 per one million adults
• Incidence increases with age: 15-50 per 100,000 in elderly patients (> 70 years)
• MDS in infants/children linked to either constitutional disorders or prior chemotherapy
MDS: Key Considerations

Clinical:

- Prolonged, unexplained cytopenia (usually symptomatic)
- Stable vs. progressive cytopenia(s)
- Search for causes, risk factors, exposures, medications
- Exclude collagen vascular disease, chronic viral infection
- ↑ in frequency of therapy-related MDS (30% MDS)
Neutropenia; assess qual/quant all lineages
MDS: Key Features

Blood:
- Cytopenias
- Variable dysplasia (assess all hematopoietic lineages)
- Variable blasts (low)

Bone Marrow:
- Hypercellular
- Dysplasia (one or more lineages); ringed sideroblasts, coarse Fe granules
- Variable blast % (often ↑ for patient age)
MYELOID NEOPLASMS

MATURATION FAILURE

AML

Blastic transformation

INTACT MATURATION

MDS

Blastic transformation

MDS/MPD

Blast phase

CMPD
Myeloid Neoplasms

<table>
<thead>
<tr>
<th>Failed Hematopoiesis</th>
<th>Under-Production</th>
<th>Excess Cell Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Myelogenous Leukemia and Blastic Transformations</td>
<td>Myelodysplasias</td>
<td>Myeloproliferative Disorders and MDS/MPD</td>
</tr>
</tbody>
</table>
Usual Features of Myeloid Neoplasms (at diagnosis)

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Bld Counts</th>
<th>BM Cellularity</th>
<th>% BM Blasts</th>
<th>Maturation Morphol</th>
<th>Spl/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPD</td>
<td>↑↑</td>
<td>Nl - ↑↑↑</td>
<td>Normal</td>
<td>Present</td>
<td>Nl (megas)</td>
</tr>
<tr>
<td>MDS</td>
<td>↓↓</td>
<td>↑ (usu)</td>
<td>Nl – 19%</td>
<td>Present</td>
<td>Dyspl.</td>
</tr>
<tr>
<td>MDS/MPD</td>
<td>↑, ↓</td>
<td>↑↑</td>
<td>Nl – 19%</td>
<td>Present</td>
<td>Dyspl.</td>
</tr>
<tr>
<td>AML</td>
<td>↑, ↓</td>
<td>↓ - ↑↑ (usu)</td>
<td>≥ 20%</td>
<td>Minimal (usu)</td>
<td>Dyspl. (usu)</td>
</tr>
</tbody>
</table>
Comparison of blood features
Comparison of bone marrow features
Blood Findings Suggestive of MDS

- Single or multilineage cytopenias
- Left shift with myeloblasts (< 20%)
- Single/multilineage dysplasia
- Neutrophils with hypogranular cytoplasm and/or nuclear segmentation abnormalities
- Erythrocyte dysplasia with nucleated forms
- Enlarged, hypogranular platelets
Normal and abnormal neutrophils
MDS: pseudo Pelger-Hüet dysplasia
BM Findings Suggestive of MDS

- Hypercellularity
- Increased blasts (< 20%); clustered blasts
- Single/multilineage dysplasia
- Abnormal localization of myeloblasts and erythroid elements
- Increased, dysplastic, clustered megakaryocytes
- Prominent karyorrhexis (apoptosis)
- Ringed sideroblasts, coarse Fe granules in erythroid cells
MDS: increased megas, cellularity
MDS: erythroid dysplasia
Erythroid dysplasia
Platelet/mega dysplasia
Comparison of CD34
Pathophysiologic Mechanisms of MDS

• Multistep pathogenesis
• Acquired stem cell abnormality resulting in clonal hematopoiesis
• Stem cell and BM microenvironmental defects (complex interplay)
• Increased BM apoptosis (bld/BM paradox)
• Acquisition of clonal abnormalities linked to disease progression and/or transformation
Conventional Karyotype/FISH

- Normal conventional cytogenetics in > 40% of 1° MDS; abnormal karyotype in > 95% T-MDS
- Frequency of cytogenetic abnormalities linked to WHO subtype (lowest in RARS; highest in RCMD)
- Whole or partial deletions of chromosomes 5, 7, 20, 8
- Translocations very uncommon
Cytogenetic Abnormalities in MDS

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>de novo MDS</td>
<td></td>
</tr>
<tr>
<td>-5/del(5q)</td>
<td>10-20%</td>
</tr>
<tr>
<td>+8</td>
<td>10%</td>
</tr>
<tr>
<td>-7/del(7q)</td>
<td>5-10%</td>
</tr>
<tr>
<td>17p-</td>
<td>7%</td>
</tr>
<tr>
<td>del(20q)</td>
<td>5%</td>
</tr>
<tr>
<td>complex abnls</td>
<td>10-20%</td>
</tr>
<tr>
<td>translocations</td>
<td>rare</td>
</tr>
<tr>
<td>Therapy-related</td>
<td></td>
</tr>
<tr>
<td>-5/del(5q) or -7/del(7q)</td>
<td>90%</td>
</tr>
<tr>
<td>complex abnls</td>
<td>90%</td>
</tr>
<tr>
<td>Translocation</td>
<td>< 5%</td>
</tr>
</tbody>
</table>
Conventional Cytogenetics

46,XX,del(5)(q31q33)[19]/46,XX[1]
Myeloid Malignancy w/ Complex Cytogenetic Abnormalities
Cytogenetics Risk (IPSS)

Good: Normal, del(5q) sole, del(20q) sole, -Y

Intermediate: Other

Poor: -7, del(7q), complex abnormalities
MDS: Diagnostic Tools and Strategies

- Serial CBC data
- Blood smear for morphologic review
- Bone marrow aspirate, biopsy, iron stain
- IHC of bone marrow core biopsy
- Flow cytometry of bone marrow aspirate
- Conventional cytogenetics; selected FISH
- IPSS (International Prognostic Scoring System)
IPSS (International Prognostic Scoring System)

Risk score is determined by % BM blasts, cytogenetics, degree of cytopenias

<table>
<thead>
<tr>
<th>Score Value</th>
<th>Prognostic variable</th>
<th>% BM blasts</th>
<th>Karyotype</th>
<th>Cytopenias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>< 5</td>
<td>Good</td>
<td>0/1</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>5-10</td>
<td>Intermediate</td>
<td>2/3</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPSS (International Prognostic Scoring System)

<table>
<thead>
<tr>
<th>Risk Group</th>
<th>vs. Median Survival (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
</tr>
<tr>
<td>Int-1</td>
<td>0.5 – 1.0</td>
</tr>
<tr>
<td>Int-2</td>
<td>1.5 – 2.0</td>
</tr>
<tr>
<td>High</td>
<td>> 2.5</td>
</tr>
</tbody>
</table>
Exemplary Case

Refractory Cytopenia w/ Multilineage Dysplasia

- 65 y.o. female
- CBC: pancytopenia
- BM Asp: Blasts 5%, dx:RCMD
- CC: del(5q31), del(9q), del(20q)
- IPSS: Poor risk
WHO Classification of MDS

<table>
<thead>
<tr>
<th>Disease</th>
<th>Blood Findings</th>
<th>BM Findings</th>
<th>Freq. of Cytog. Abnls*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>• Anemia</td>
<td>• Erythroid dysplasia only</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>• No or rare blasts</td>
<td>• < 5% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• < 15% ringed sideroblasts</td>
<td></td>
</tr>
<tr>
<td>RARS</td>
<td>• Anemia</td>
<td>• Erythroid dysplasia only</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>• No or rare blasts</td>
<td>• < 5% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ≥ 15% ringed sideroblasts</td>
<td></td>
</tr>
<tr>
<td>RCMD</td>
<td>• Bi- or pancytopenia</td>
<td>Dysplasia in 10% cells of ≥ 2 myeloid lineages</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>• No or rare blasts</td>
<td>• < 5% blasts</td>
<td></td>
</tr>
<tr>
<td>RCMDv</td>
<td>• Bi- or pancytopenia</td>
<td>Dysplasia in 10% cells of ≥ 2 myeloid lineages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No or rare blasts</td>
<td>• < 5% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ≥ 15% ringed sideroblasts</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Blood Findings</td>
<td>BM Findings</td>
<td>Freq. of Cytog. Abnls*</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>RAEB-1</td>
<td>• Cytopenias</td>
<td>• Unilineage or multilineage dysplasia</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>• < 5% blasts</td>
<td>• 5 – 9% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No Auer rods</td>
<td></td>
</tr>
<tr>
<td>RAEB-2</td>
<td>• Cytopenias</td>
<td>• Unilineage or multilineage dysplasia</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>• 5-19% blasts</td>
<td>• 10 – 19% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Auer rods +/-</td>
<td>• Auer rods +/-</td>
<td></td>
</tr>
<tr>
<td>5q- syndrome</td>
<td>• Anemia</td>
<td>• NI in ↑ megas w/ hypolobated nuclei</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>• Usu. nl or ↑ platelets</td>
<td>• < 5% blasts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• < 5% blasts</td>
<td>• del(5q) only cytog. abnormality</td>
<td></td>
</tr>
<tr>
<td>Myelodysplasia, unclassified</td>
<td></td>
<td></td>
<td>*No cytog. feature specific for MDS</td>
</tr>
</tbody>
</table>
Exemplary Case

74-year-old female with fatigue

CBC: WBC 3.8 (ANC 2.9)
RBC 2.9 MCV 104 fl
Hgb 10.1 RDW 14%
Hct 30% Plt 411
Elderly female with macrocytic anemia

Prussian blue
Elderly female with macrocytic anemia
BM Differential:
2% blasts
45% erythroid
60% cellularity
↑ abnormal megakaryocytes

Cytogenetics: 47,XX,+19[17],46,XX[3]

IPSS: Int-1
Diagnosis?

RARS

vs.

RCMDv
MDS Diagnostic Challenges

Low grade MDS vs. benign:

Diagnosis of exclusion

- Normal karyotype
- Stable CBC
- Borderline dysplasia

Trisomy 6
MDS Diagnostic Challenges

Distinction between true dysplasia vs. “abnormal” morphology

- G-CSF or EPO-driven BM
- Medication-related dyspoiesis
- Significance of low frequency, subtle findings

Familial P-H/med.
MDS Diagnostic Challenges

Other causes of dysplasia in blood, BM

- Nutritional deficiency
- Drug exposures
- Underlying chronic infections
- Inflammatory, autoimmune disorders
- Dietary supplements (zinc)
- Toxins, poisons

Copper deficiency
Megaloblastic anemia, normal MCV
HIV-related dysplasia
MDS Diagnostic Challenges

MDS vs. low blast count AML

• Most frequently issue with t(8;21), inv(16), t(15;17) AMLs
• Morphologic “clues” to distinct AML subtypes
• Careful delineation of blasts, blast equivalents
• 20% blasts (blast equivalent) threshold

15% blasts, t(8;21)
Tips to Assess Dysplasia

- Focus on specific dysplastic features such as hypogranular cytoplasm of neutrophils and neutrophil nuclear hypo- or hypersegmentation.

- Be aware that many non-neoplastic conditions are associated with anisopoikilocytosis of RBC’s and nuclear aberrations of erythroid elements in BM.
Tips to Assess Dysplasia

• Assess proportion of cells within a given lineage with abnormal morphology; rare unusual cells are of unlikely significance.

• Assess for multilineage dysplasia

• Assess % of myeloblasts/blast equivalents. ↑ blasts in conjunction w/ significant dysplasia is strong predictor of MDS.
MDS: Practical Approach/Key Tips

- Consider clinical and hematologic “data”, especially sequential CBCs
- Be wary of isolated, low frequency RBC, erythroid lineage abnormalities (lack specificity)
- Technically excellent slide preparations essential
- Evaluate all lineages for MDS features or clues to prototypic low blast count AML subtypes
MDS: Practical Approach/Key Tips

• Careful blast enumeration (do not use CD34 by flow as surrogate for blast %)

• Assess bone marrow architecture by immunohistochemistry

• Full karyotyping recommended (targeted FISH may be useful)