Medical and Endoscopic Management of Esophageal Disease

James W Ostroff, MD
Advances in Internal Medicine 2007
University of California, San Francisco
MEDICAL THERAPY OF GERD

Chronic Therapy

GERD often requires maintenance therapy to prevent relapse

- Long term therapy is better with PPIs than H2 blockers in patients with erosive esophagitis

- Long term omeprazole therapy is efficacious and safe

Gastroenterology 2001; 121: 1095-1100

Loxiglumide

Atropine

Decreases TLESR stimulated by gastric distension

Not clinically appropriate

Transient Lower Esophageal Sphincter Relaxation (TLESR)

Dominant mechanism of gastroesophageal reflux

TLESR vasovagal reflux caused by gastric distension

Activation of the mechanoreceptors in the subcardiac region of the stomach

Nocturnal Gastric Acid Breakthrough

- Bacosan may reduce frequency of both acid and nonacid reflux, *Cont. 2002; 13: 907, 1999*

- Confusion
- Dizziness or Lightheadedness
- Drowsiness
- Nausea
- Unusual Weakness, especially muscle weakness
- Abdominal or stomach pain
- Trembling

Medication Influencing TLESR

- Atropine and Morphine decrease frequency of TLESR
 - Not clinically appropriate

Pascual R et al Effect of morphine on gastroesophageal reflux and transient lower esophageal sphincter relaxation. Gastroenterology 112: 400-406

Wital RW et al Effect of atropine on the frequency of reflux and increased lower esophageal sphincter relaxation in normal subjects. Gastroenterology 104: 1947-1950

- **Lodigainide**
 - Cholecystokinin A antagonist
 - Decreases TLESR stimulated by gastric distension

MEDICAL THERAPY OF GERD

Maintenance Therapy in Erosive Esophagitis (CONT.)

SAFETY

- No significant changes in mucosal histology in those individuals with and without histologic atrophy

- No carcinoids or gastric cancer

Gastric mucosal atrophy may be more common with HP infection

- 50% of patients may be able to switched to H2 blockers

Nocturnal Gastric Acid Breakthrough

- End point of no symptoms more difficult to achieve than esophageal healing
- on demand therapy appears to be adequate

Babban KI et al. Symptomatic gastro-esophageal reflux disease: Double blind controlled study of intermittent treatment with omeprazole or ranitidine. The European Study Group. BMJ 1992; 292:

MEDICAL THERAPY OF GERD

Maintenance Therapy in Nonerosive GERD

Less responsive to therapy than erosive esophagitis

- on demand therapy appears to be adequate

Babban KI et al. Symptomatic gastro-esophageal reflux disease: Double blind controlled study of intermittent treatment with omeprazole or ranitidine. The European Study Group. BMJ 1992; 292:

MEDICAL THERAPY OF GERD

Medication Influencing TLESR

- Atropine and Morphine decrease frequency of TLESR
 - Not clinically appropriate

Pascual R et al Effect of morphine on gastroesophageal reflux and transient lower esophageal sphincter relaxation. Gastroenterology 112: 400-406

Wital RW et al Effect of atropine on the frequency of reflux and increased lower esophageal sphincter relaxation in normal subjects. Gastroenterology 104: 1947-1950

- **Lodigainide**
 - Cholecystokinin A antagonist
 - Decreases TLESR stimulated by gastric distension

Predictors of Response to PPI Therapy in Patients with GERD: the Influence of Co-Morbid IBS and Psychological Disease

85 GERD patients completed study, all treated with rabeprazole (Aciphex 20 mg per day)

- All patients completed the following indexes:
 - Digestive Health Symptom Index (DHSI), Reflux Disease Questionnaire, QOLRAD, IBS (psychological assessment)
 - IBS (irritable bowel syndrome): 3 Manning criteria on DHSI; psychological distress as BSI > 63

Results

- 31% of patients had IBS
- 38% of patients had psychological distress
- GERD patients with IBS: more severe total GERD symptoms, heartburn and Regurgitation (p < 0.05). All GERD patients improved with therapy, but those with IBS Less
- GERD patients with Psychiatric Distress: the baseline symptoms were the same but response to therapy is less (p < 0.05)

Conclusions

- Co-morbid conditions make symptoms worse and blunt response
- In refractory case be certain that more invasive therapy is justified!!

MEDICAL THERAPY OF GERD

Medication Influencing TLESR (CONT.)

- N-monomethyl-L-arginine
 - Nitric oxide (NO) synthase inhibitor
 - Decreases TLESR stimulated by gastric distension
 - Decreases TLESR in humans
 - Central and peripheral mechanism

MEDICAL THERAPY OF GERD

Medication Influencing TLESR (CONT.)

- N-monomethyl-L-arginine
 - Nitric oxide (NO) synthase inhibitor
 - Decreases TLESR stimulated by gastric distension
 - Decreases TLESR in humans
 - Central and peripheral mechanism

MEDICAL THERAPY OF GERD

Predictors of Response to PPI Therapy in Patients with GERD: the Influence of Co-Morbid IBS and Psychological Disease

85 GERD patients completed study, all treated with rabeprazole (Aciphex 20 mg per day)

- All patients completed the following indexes:
 - Digestive Health Symptom Index (DHSI), Reflux Disease Questionnaire, QOLRAD, IBS (psychological assessment)
 - IBS (irritable bowel syndrome): 3 Manning criteria on DHSI; psychological distress as BSI > 63

Results

- 31% of patients had IBS
- 38% of patients had psychological distress
- GERD patients with IBS: more severe total GERD symptoms, heartburn and Regurgitation (p < 0.05). All GERD patients improved with therapy, but those with IBS Less
- GERD patients with Psychiatric Distress: the baseline symptoms were the same but response to therapy is less (p < 0.05)

Conclusions

- Co-morbid conditions make symptoms worse and blunt response
- In refractory case be certain that more invasive therapy is justified!!

Summary

- Genetic predictors and lifestyle changes have less impact than medications
- PPI’s are the basis of most therapeutic regimens
- Chronic maintenance is safe
- The prokinetic agent tegaserod may have a future role
- Blocking lower esophageal sphincter relaxation appears to be important
- The ideal surgical candidate is one with:
 - typical reflux who responds completely to medical management, yet desires surgical therapy
 - patients with nocturnal regurgitation accompanied by pulmonary complications

MEDICAL THERAPY OF GERD

Medication Influencing TLESR (CONT.)

- N-monomethyl-L-arginine
 - Nitric oxide (NO) synthase inhibitor
 - Decreases TLESR stimulated by gastric distension
 - Decreases TLESR in humans
 - Central and peripheral mechanism

MEDICAL THERAPY OF GERD

Predictors of Response to PPI Therapy in Patients with GERD: the Influence of Co-Morbid IBS and Psychological Disease

85 GERD patients completed study, all treated with rabeprazole (Aciphex 20 mg per day)

- All patients completed the following indexes:
 - Digestive Health Symptom Index (DHSI), Reflux Disease Questionnaire, QOLRAD, IBS (psychological assessment)
 - IBS (irritable bowel syndrome): 3 Manning criteria on DHSI; psychological distress as BSI > 63

Results

- 31% of patients had IBS
- 38% of patients had psychological distress
- GERD patients with IBS: more severe total GERD symptoms, heartburn and Regurgitation (p < 0.05). All GERD patients improved with therapy, but those with IBS Less
- GERD patients with Psychiatric Distress: the baseline symptoms were the same but response to therapy is less (p < 0.05)

Conclusions

- Co-morbid conditions make symptoms worse and blunt response
- In refractory case be certain that more invasive therapy is justified!!

Summary

- Genetic predictors and lifestyle changes have less impact than medications
- PPI’s are the basis of most therapeutic regimens
- Chronic maintenance is safe
- The prokinetic agent tegaserod may have a future role
- Blocking lower esophageal sphincter relaxation appears to be important
- The ideal surgical candidate is one with:
 - typical reflux who responds completely to medical management, yet desires surgical therapy
 - patients with nocturnal regurgitation accompanied by pulmonary complications

ESOPHAGEAL STENTS

Esophageal Stent

- Used for decades to palliate dysphagia in esophageal carcinoma
- Non-expandable stents with dilation to insert it
- Patients with esophageal carcinoma, stent insertion may be followed by improved dilation and esophageal stents. Gastroint Endosc Clin North Am 1994; 4: 851-862
- Preferred therapy for tracheoesophageal fistulas secondary to esophageal cancer

References

Disease

- GERD: the influence of Co-Morbid IBS and Psychological Disease

Conclusions

- Co-morbid conditions make symptoms worse and blunt response
- In refractory case be certain that more invasive therapy is justified!!

Summary

- Genetic predictors and lifestyle changes have less impact than medications
- PPI’s are the basis of most therapeutic regimens
- Chronic maintenance is safe
- The prokinetic agent tegaserod may have a future role
- Blocking lower esophageal sphincter relaxation appears to be important
- The ideal surgical candidate is one with:
 - typical reflux who responds completely to medical management, yet desires surgical therapy
 - patients with nocturnal regurgitation accompanied by pulmonary complications
Esophageal Stent

- Retrospective Population-based study
 - All patients treated with esophageal stenting for malignant disease Swedish Registry 1997-2000
 - N: 1052 with esophageal or cardia cancer
 - 420 (38%): treated with stenting
 - 74 yo: median age
 - 7 days: median in-hospital stay
 - 100 days: median survival
 - N: 152/420 (38%): evaluated for complications
 - 41/152 (27%): complications of some type
 - 20/152 (13%): direct procedure related complications
 - 2/152: procedure related deaths (esophageal perforations)

Esophageal Stent (cont.)

- Non-expandable stents ("Celestin Tubes")
 - Difficult to insert
 - Always require dilation
 - Always require very heavy sedation or plexus block
 - High risk of perforation
 - Expanding Metal Stents:
 - Easy to place
 - Subject to tumor overgrow and ingrowth
 - Difficult to remove
- Plastic Stents
 - Difficult to place and remove
 - Less tumor ingrowth and overgrowth
ESOPHAGEAL STENT

Esophageal Stent (cont.)

- Ruptured esophagus (Boerhaave’s syndrome)
- Use of self-expanding stents
 - As a adjuvant to surgical repair with continued leakage
 - As a primary solution
- Stent type:
 - Ultraflex stent (Microvasive)
 - Does not expand forcefully
 - Knitted nitinol wire
 - Smooth ends
 - **Advantages**
 - Prevent ischemic complications
 - Safer stent removal

Complications

- Early Complications (17/40%): within 7 days
 - Perforation and death at time of dilation of the malignant stricture (2)
 - Stent migration (7)
 - Hemorrhage (7)
 - Stent displacement (4)
 - Food bolus impaction (1)
- Late Complications (25/60%): after 8 days
 - Tumor ingrowth or overgrowth and food impaction (14 required repeat intervention)
 - Leak (3)
 - Bowel perforation (1)

- Technical complications (4) (50%)
 - Stent migration (7)
 - Perforation and death at time of dilation of the malignant stricture (2)

- Survival not influenced by complications (except perforation) (p=0.32)

Chest pain and pharyngeal discomfort: >95% within two days

Modified Ultraflex Stent

- With a knitted nitinol wire
- Initially more radially strong

Self Expanding Plastic Stents (SEPS)

- Results:
 - Successful dilation in all groups at one week
 - Dysphagia improved in all groups at one week
 - Technical success 100%
 - Fewer reflux episodes in the new stent as compared to the Dosten or the open stent

- Conclusions:
 - Effective
 - Advantage: probably less ingrowth and removable

Esophageal Stent (cont.)

Complications:

- Perforation (4-8%)
 - Risk factors: previous surgery, radiation and angulated esophagus
 - Mortality: 8-15%

- Stent migration

Late:

- Tumor ingrowth or overgrowth
- Necrosis with chest pain and bleeding

Endoscopic Ablation of Barrett’s Esophagus

Barrett’s = Intestinal Metaplasia

- Metaplasia = change in cell-type
- Squamous to specialized intestinal cells
- First described by Norman Barrett in 1950
- Related to esophagus in 1953 (Allison/Johnson)
- Adaptive mechanism to injury

Barrett’s Esophagus is due to Chronic GERD

Conventional wisdom

- 18.6 million U.S. adults with daily GERD
 - Frank et al. Upper GI Symptoms in N. America. Digestive Disease Sciences 2000; 45(4)
- 12% Barrett’s prevalence in GERD population (2.0 M)

Growing incidence and prevalence

- 6.8% of persons over age 40 have Barrett’s (8.7 M)
- 25% of persons without GERD > age 50 have Barrett’s (20 M)

Normal Esophagus
Barrett’s Disease Evolution and Demographics

Barrett’s Classification and Management

- Non-dysplastic IM
 - Surveillance every 1-3 years
 - Attempt to detect progression at treatable stage
 - Not preventative

- LGD
 - Surveillance every 6-12 months
 - Attempt to detect progression at treatable stage
 - Not preventative

- HGD and CIS
 - Treated like adenocarcinoma
 - Standard of care is esophagectomy
 - PDT has been more recent option

Is Barrett’s Benign?

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Total</th>
<th>% risk in 4 yrs</th>
<th>% risk per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total IM Patients</td>
<td>618</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>New LGD</td>
<td>100</td>
<td>16.1%</td>
<td>4.1%</td>
</tr>
<tr>
<td>HGD</td>
<td>32</td>
<td>3.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Cancer</td>
<td>12</td>
<td>2.0%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

5.6% HGD/CA 1.4% HGD/CA
One Outcome of Surveillance

- Esophageal Adenocarcinoma
- Baseline Barrett’s Esophagus

Ablation / Removal Tools

- Photodynamic therapy
- HALO360 (most recent)
- Argon plasma (APC)
- MPEC (gold probe)
- KTP or Nd:YAG
- Cryotherapy
- Endo-Window (EES)
- Endoscopic mucosal resection (EMR)

Mucosal Ablation

What is ablation?

- Implies destruction and, ultimately, removal
- Mechanism…heating of tissue to the point of vaporization and/or coagulation
- Endpoint is irreversible cell injury and, ultimately, cell death

“Ideal” Ablation Objectives

- Per-oral endoscopic approach
- Remove all IM
- Circumferential ablation
- Quick
- Uniform reproducible ablation depth
- Target depth…muscularis mucosae
- No injury to submucosa or deeper structures
- Very low risk of complications
TREATMENT OBJECTIVES
- Muscularis mucosae
 (Ablation Target Depth)
- Submucosa with esophageal glands
- Muscularis propria

HALO360 ablation depth reduces the risk of strictures
EMR Depth

Ablation Technical Challenges
- Endoluminal target (<30 mm ID)
- Very dynamic target
- Distant from operator (>40 cm)
- Can’t use laparoscopy instrument paradigm (rigid instruments, angle of attack, feedback, great visualization)
- Unforgiving organ (thin wall, mediastinum)
- Thin, corrugated target epithelium

Thin Corrugated Target Epithelium

Endoluminal Target

Historically... Point and Shoot Inadequate
- Hand-held “Point and Shoot”
 Technically demanding to achieve proper effect
- Non-uniform ablation
- Uncontrolled power delivery
- Visual endpoint for completing session
- Anatomy of distal esophagus not considered, its not round
- Repeat therapy is the rule

Thermocoagulation modalities plus Proton Pump Inhibitor Compared
- Patients with Barrett’s esophagus 2-7 cm in length without cancer or dysplasia
 Randomized to pantoprazole (40mg twice per day) and
 - Argon plasma coagulation (APC) or
 - Multipolar electrocoagulation (MPEC)
- N: 235 patients screened
 - 52 patients randomized
 - Length of Barrett’s segment 3.1 cm in MPEC vs 4.0 cm in APC (p=0.03)
 - Mean treatment sessions 2.9 MPEC vs 3.8 APC (p=0.04) (intention to treat analysis) (p=0.249 adjusted for different length)
 - Endoscopic ablation achieved MPEC 88% vs APC 75%
 - Histologically achieved in 81% MPEC vs 65% APC
 - Treatment duration mean time 6 minutes MPEC vs 10 minutes APC (p=0.01)
THERMOCOAGULATION MODALITIES PLUS PROTON PUMP INHIBITOR COMPARED

- Complications
 - Upper abdominal pain 8% MPEC vs 13% APC (p=0.64)

- Conclusions
 - Tread in MPEC toward fewer sessions
 - Greater endoscopic and histologic ablation

Complications: Complications
- Photosensitivity (69%)
- Stricture formation (36%)

High-power Radiofrequency (RF) Ablation device (HALO 360)

- Esophageal Adenocarcinoma progression
 - PDT+PPI: 13%
 - PPI: 28% (p=0.006)

- 18 month follow-up:
 - 75% of PDT+PPI patients free of IM-HGD
 - 52% of PDT+PPI free of IM

Ablation Objectives Revisited
- Removal all IM
- Circumferential
- Don’t go deeper than muscularis mucosae
- Don’t require “point and shoot”
- Automate the process
- Quick
- Avoid strictures and buried glands

Photodynamic Therapy (PDT)
- N: 208 with IM-HGD
 - Randomized 2:1 PDT+PPI: PPI alone
 - PDT+PPI: 1 (96%), 2 (68%) or 3 (47%) treatment sessions
 - Photosensitizing agents and endoscopically delivered laser

Results at 24 months follow-up
 - PDT+PPI: 13%
 - PPI: 28% (p=0.006)

HALO360 System

- HALO360 Energy Generator
 - 2001 FDA clearance for treatment of Barrett’s esophagus.
 - HALO360 Ablation Catheter

- HALO360 Sizing Balloon, Output cable, and Foot pedal not shown

High-power Radiofrequency (RF) Ablation device (HALO 360)

- Energy delivery in < 1 sec
- 3mm circumferentially
- Standardized energy density

Results
- Controls depth of ablation
- Enables uniform ablation
- Prevents strictures, buried glands, and perforations
- Eliminates point-and-shoot by providing an even target

Magnified Electrode

Balloon-based Electrodes

- Electrodes Clearly Spaced
- Energy delivery in < 1 sec
- 3mm circumferentially
- Standardized energy density

Results
- Controls depth of ablation
- Enables uniform ablation
- Prevents strictures, buried glands, and perforations
- Eliminates point-and-shoot by providing an even target
Irrigate
Measure Landmarks
Place Guidewire

Automated Sizing
Dilates and Calibrates Size

Baseline
Insertion of Electrode followed by Inflation

Result of 1 second ablation
Endoscopic Appearance

Baseline, 4 cm IM
Clean base after immediate slough (10 J/cm² twice)

 AIM-II
Baseline, 3 cm IM
Acute, 10 J/cm² twice
1 mo, no evidence of IM, no stricture
3 mo, no evidence of IM, no stricture

Clinical Trials using HALO³⁶⁰

Study Objectives
- Can we completely remove all Barrett’s (surface)
- How deep does the ablation extend (depth)
- What is the response rate (effectiveness)
- What is the adverse event profile
- How well tolerated is the procedure
- How can the device be improved to be easier to use, safer, and more effective

Control of Ablation Depth
Dosimetry Study to Validate Depth of Penetration

Immediate Effect of 10 J/cm²

Linear Response to Varying Energy Density
Ablation of intestinal metaplasia (IM) containing high-grade dysplasia (HGD) has been reported to be curative. A Prospective multicenter evaluation of a balloon-based ablation device for the ablation of non-dysplastic Barrett’s esophagus: One year results of the ablation of intestinal metaplasia (AIM-I) trial; AGA: S1691; Presented at DDW 2005

Aim: Successful ablation of Barrett’s esophagus with low grade dysplasia using a balloon-based ablation device: Preliminary results of the ablation of intestinal metaplasia with LGD (AIM-LGD) Trial; Gastrointestinal Endoscopy 2005; 61:AB143 Presented at DDW 2005

Ablation of circumferential segments with IMM-HGD using the HALO 360 system: Maximum ablation depth (histological layer) Complete ablation of IM and HGD

Background: Ablation of intestinal metaplasia (IM) containing high-grade dysplasia in patients undergoing esophagectomy

Prior to esophagectomy:
- Ablation of circumferential segments with IMM-HGD using the HALO 360 system
- Settings randomized to 10, 12 & 14 J/cm² and 2, 3 and 4 applications

Following Esophagectomy: Ablations zones evaluated
- Maximum ablation depth (histological layer)
- Complete ablation of IM and HGD

Results:
- Maximum ablation depth (histological layer)
- 10 treatment zones created
- no adverse events
- no evidence of transmural thermal effect

Pathology:
- Gross: sloughing mucosa

Histology: maximum ablation depth was lamina propria (LP) or muscularis mucosa (MM) Edema in submucosa at 14 J/cm². of highest energy level 9/10 ablation zones complete ablation of IM and HGD 1/10 viable IM-HGD at margin of zones (12 J/cm² x 2): incomplete overlap

Clinical Results Summary
- No buried glands
- No strictures
- AIM-I one year data: 67% complete response (CR)
- AIM-II 12 month data: 51% complete response (CR)
- Treatment to complete response is achievable

Complete Response Post-ablation

Before
- 62 y/o male with HGD

~1 month post procedure
- Complete Cure

Histology:
- Maximum ablation depth was lamina propria (LP) or muscularis mucosa (MM) Edema in submucosa at 14 J/cm². of highest energy level 9/10 ablation zones complete ablation of IM and HGD 1/10 viable IM-HGD at margin of zones (12 J/cm² x 2): incomplete overlap

Pathology:
- Gross: sloughing mucosa

Histology: maximum ablation depth was lamina propria (LP) or muscularis mucosa (MM) Edema in submucosa at 14 J/cm². of highest energy level 9/10 ablation zones complete ablation of IM and HGD 1/10 viable IM-HGD at margin of zones (12 J/cm² x 2): incomplete overlap

Clinical Results Summary
- No buried glands
- No strictures
- AIM-I one year data: 67% complete response (CR)
- AIM-II 12 month data: 51% complete response (CR)
- Treatment to complete response is achievable

Histology:
- Maximum ablation depth was lamina propria (LP) or muscularis mucosa (MM) Edema in submucosa at 14 J/cm². of highest energy level 9/10 ablation zones complete ablation of IM and HGD 1/10 viable IM-HGD at margin of zones (12 J/cm² x 2): incomplete overlap
Conclusion

- Barrett’s is a common disease
- Barrett’s progresses to HGD/EAC (1.4%/pt/yr)
- Removal of IM may be comparable to removal of colon polyps in terms of cancer prevention and avoidance of esophagectomy
- Challenges in past (stricture and buried glands)
- New ablation technology
 - Controlled ablation depth for removing IM/dysplasia
 - Complete elimination possible without stricture formation or buried glands
 - Multi-center, randomized, sham-controlled trial prepared to start in Jan 2006 for LGD and HGD management