24th Annual
Advances in Heart Disease

Advances in
Pharmacotherapy of PAH

Gabriel Gregoratos, MD
Faculty Disclosure Statement

for Gabriel Gregoratos, MD

Nothing to disclose relevant to this presentation
‘Venice’ clinical classification of pulmonary hypertension (PH) – 2003

Group 1

PAH
- Idiopathic PAH (IPAH)
- Familial PAH
- Associated PAH (APAH):
 - Collagen vascular disease
 - Congenital systemic-to-pulmonary shunts
 - Portal hypertension
 - HIV infection
 - Drugs and toxins
 - Other
 - Associated with significant venous or capillary involvement
 - Persistent pulmonary hypertension of the newborn

2. PH associated with left heart disease

3. PH associated with respiratory disease
 - i.e., COPD, interstitial lung disease

4. PH due to chronic thrombotic and/or embolic disease
 - CTEPH

5. Miscellaneous
 - i.e., sarcoidosis

1Simonneau et al. J Am Coll Cardiol 2004
As PAH Progresses Cardiac Output Declines

Time

Presymptomatic/Compensated
Symptomatic/Decompensating
Declining/Decompensated

CO=cardiac output, PAP=pulmonary arterial pressure, PVR=pulmonary vascular resistance, RAP=right atrial pressure.
<table>
<thead>
<tr>
<th>Therapy</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>Supplemental for hypoxia to maintain oxygen saturations at >90%</td>
</tr>
<tr>
<td>Diuretics</td>
<td>For patients with evidence of right ventricular failure—peripheral edema and/or ascites—important to maintain near-normal intravascular volume</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>For in situ microscopic thrombosis and increased risk of pulmonary thromboembolism due to right ventricular failure and venous stasis</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Not extensively studied, but useful in patients refractory right ventricular failure and/or atrial dysrhythmias</td>
</tr>
</tbody>
</table>
Multi-hit Hypothesis for PAH

- Sheer Stress (e.g., congenital heart disease)
- Viruses (e.g., HIV)
- Drugs/toxins (e.g., fenfluramine)
- Inflammation
- Autoimmunity (MCTD)
- Genetic Mutations (e.g., BMPR-2, Kv Channels, PGIS deficiency)

Endothelial cell dysfunction → over- or under-expression of certain Vasoactive and Growth Factors; abnormal Receptor function, and overexpression of Serotonin transporter system

Adapted from Cool CD et al. Chest. 2005;128:565S-571S.
PAH: Rapid Progression and Poor Survival

PAH: Targeted Pharmacotherapy - 2007

• Vasodilators/antiproliferative drugs
 ♥ Calcium channel blockers (nonspecific vasodilators) in vasoreactive patients
 ♥ Prostacyclins (epoprostenol and analogs)
 ♥ Endothelin receptor antagonists (ERAs)
 ♥ Phosphodiesterase 5 (PDE 5) inhibitors
 ♥ Investigational agents
Calcium Channel Blockers and Vaso-Reactivity Testing in PAH

• Vasodilator testing helps determine which patients with PAH might benefit from oral calcium channel blocker treatment
 – Preferred agents for vasodilator testing are intravenous epoprostenol, inhaled NO, or IV adenosine
 – Fewer than 15% of tested patients are acute responders
 – Unstable patients or those with severe right heart failure should not be treated with CCBs or undergo vasodilator testing
• Positive acute vasodilator response which is defined as:
 – A fall of mPAP of ≥ 10 mm Hg to ≤ 40 mm Hg with increased or unchanged cardiac output
 – A fall in PVR?

Badesch DB et al. CHEST. 2004;126(suppl):35S-62S.
Calcium Channel Blockers in PAH

- Long term responders only 5-8% (1/2 of acute responders)
- Nifedipine, amlodipine and diltiazem are commonly used (high dose)
- CCBs with major negative inotropic activity (e.g. verapamil) are not recommended
- CCB should not be used in patients with severe right heart failure
Long-Term Response to CCBs in PAH

537 patient cohort

Sitbon et al. Circulation 2005; 111:3105
Prostacyclins (The Gold Standard ?)

- Intravenous: Epoprostenol (Flolan®)*, Trepostinyl (Remodulin®)*
- Subcutaneous: Trepostinyl*
- Inhaled: Iloprost (Ventavis®)* Trepostinyl+
- Oral: Beraprost**

* FDA approved
+ Investigational/in development
** Non-FDA approved
Epoprostenol (Flolan®) Indications

- Reduces dyspnea, improves exercise capacity, hemodynamics, WHO class and improves survival
- Original indication: Class III or IV in iPAH or PAH related to CTD
- Also effective in Eisenmenger’s syndrome, portopulmonary HTN, and PAH related to HIV infection (off-label use)
- Contraindicated in severe LV dysfunction
- Administered via continuous central venous infusion
- Very short ½ life
- Requires temperature control (cold pack)
- Still first choice in advanced class III or IV cases
Long-term PAH Survival with IV Epoprostenol

Figure 3. Three-year survival observed in the present study and predicted by the NIH equation using baseline hemodynamics. \(P<0.001 \) at 1, 2, and 3 years.
TREPROSTINIL (Remodulin®)
(analog of Epoprostenol)

- FDA approved for PAH (SC 2002, IV 2005, inhaled is investigational) for NYHA Class II-IV
- Improves exercise capacity
- Reduces symptoms associated with exercise
- Overall benefits similar to those of epoprostenol
- Has safety (longer half-life life) and convenience advantages (no mixing or cold packs, smaller pump) over IV epoprostenol
- No long-term survival data
- Dose (~100 ng/kg/min) is >2x that of epoprostenol
Inhaled Iloprost Rationale

- Provides activity directly to lung
- Minimizes systemic side effects
- Avoids indwelling catheter complications

![Diagram of lung structures]
Inhaled Iloprost: Pharmacokinetics

Half-life: 7 to 10 min
Absolute bioavailability (estimate): ~80%
ILOPROST (Ventavis ®)

- Stable analog of Prostacyclin
- Administered aerosolized by inhalation
- Dose: 2.5-5 mcg/inhalation
- Short half life, but duration of PA pressure reduction is 45-60 min after each inhalation
- May cause less V/Q mismatch than Flolan
- Frequency of administration: at least 6x/ day (up to 9x) for 10-15 min each
- Cost: $60-70,000/year
- No long-term survival data
AIR: Improvement in Clinical Response of 203 patients with NYHA Class III or IV PH

Composite response definition: no death or worsening, 6MWT 10% increase plus NYHA class improvement without death or clinical worsening
AIR: Hemodynamic Parameters*

†P<0.001 for the difference from baseline values

Change from baseline (%)

-30 -25 -20 -15 -10 -5 0 5 10 15 20

PVR CO mPAP

Ventavis® (iloprost) Placebo

†P<0.001 for the difference from baseline values
Endothelin Receptor Antagonists (ERAs)

- Oral (major advantage)
 -- Non selective (block ET_A and ET_B)
 - Bosentan (Tracleer®) – approved 2001
 -- Selective (block ET_A)
 - Sitaxsentan – Still Investigational
 - Ambrisentan (Letairis®) – approved June 2007

Issue of selective vs non selective ERAs is still debated
Bosentan (Tracleer®)

- FDA-approved for the treatment of PAH in class III or IV patients
 —Improves exercise capacity
 —Decreases the rate of clinical worsening
- 62.5 mg bid for first 4 weeks
- Up-titration to a maintenance dose of 125 mg bid if liver function OK
- Contraindicated with glyburide, cyclosporine
- Costs ~ $36,000 annually
Predicted Survival and Observed Survival After Bosentan Treatment

85% and 70% were on bosentan monotherapy at 12 and 24 mos, respectively

Event rate/year (exponential): 5.5%

McLaughlin VV et al. Eur Respir J. 2005;25:244-249.
Monitoring of Bosentan Therapy

- LFTs initially and monthly; stop if >5X ULN
- Liver toxicity reversible with cessation
- Watch for leg edema, nasal congestion
- Hemoglobin initially, 1 and 3 months
- May interfere with hormonal birth control (BCP); barrier methods advisable
- High potential for birth defects: pregnancy class X
- Response takes up to 2 or 3 months
- Should be used with caution in class IV patients and not without RH catheterization to document presence and level of PAH
BREATHE-5: Bosentan in Patients With Eisenmenger Syndrome (off label use)

Tracleer significantly increased exercise capacity

- Mean change from baseline:
 - 6MWD: -10 to +43 meters
 - PVRI: +155 dyn·sec/cm² to -317 dyn·sec/cm²

Tracleer significantly reduced pulmonary vascular resistance index

Baseline values:
- 6MWD: Placebo 366.4 ± 67.6, Tracleer 331.9 ± 82.8
- PVRI: Placebo 2670 ± 1203.3, Tracleer 3425.1 ± 1410.5

Treatment effect:
- 6MWD: p = 0.008
- PVRI: p = 0.04

Background therapies: oral vasodilators, cardiac glycosides.

BENEFiT Study

• Randomized trial – 157 patients

• OBJECTIVE: To demonstrate the efficacy of bosentan in patients with inoperable CTEPH or persistent/recurrent PH post pulmonary endarterectomy

• To evaluate the safety and tolerability of bosentan in this patient population

Bosentan in CTEPH
Summary of BENEFiT Results (off label)

• Clinically relevant improvement in cardiac hemodynamics:
 – PVR decreased ($p < 0.0001$)
 – Cardiac index increased
 – NT-pro-BNP decreased
• Improvement in Borg dyspnea index
• No effect on exercise capacity ($p = ns$)
• Positive trends on other endpoints:
 – Fewer bosentan-treated patients worsened WHO functional class
 – Time to clinical worsening trends in favor of bosentan
• Safety and tolerability:
 – Consistent with previous controlled trials with bosentan in PAH
Ambrisentan ARIES-1 Primary Endpoint: Change in 6MWD at Week 12

N=202.
Placebo-adjusted changes: 10 mg = +51.4 m (P=0.0001)
5 mg = +30.6 m (P=0.0084)

Oudiz RJ. et al. Chest. 2006;130: Abstract 121S.
ARIIES-2: Time to Clinical Worsening With Ambrisentan

Time to clinical worsening = Combined endpoint of death, lung transplantation, atrial septostomy, hospitalization for PAH, addition of other drugs for PAH, or early escape from clinical trial.

Elevations in LFTs >3x ULN with ERAs

<table>
<thead>
<tr>
<th></th>
<th>Serum aminotransferases concentrations</th>
<th>Placebo 12-week (%)</th>
<th>Active Agent 12-weeks (%)</th>
<th>Active Agent 1-year (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrisentan (All Doses) (N=483)</td>
<td>>3 x ULN</td>
<td>2.3%</td>
<td>0.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Bosentan 125 mg bid (n=165) PAH patients only</td>
<td></td>
<td>3%</td>
<td>13%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tracleer Package Insert. 2007.
Letaris Package Insert. 2007.
PDE-5 Inhibitors

• Oral
 -- Sildenafil *
 -- Tadalafil ** (longer acting)

* FDA approved
** Investigational/in development
Sildenafil (Revatio ®)

- FDA approved in June 2005 for PAH “to improve exercise capacity”
- Dose: Start with 20 mg tid
- Must not be used with nitrates, but compatible with most other drugs
- Metabolized by the liver (CYP3A4 isoenzyme)
- Metabolism slowed in cirrhotics; not affected by renal failure
- May potentiate Warfarin effect
- Oral; relatively inexpensive (∼ $ 12,000/year)
SUPER-1 Study: Improvement in 6-Minute Walk Distance As Early as Week 4

- Placebo (n=66)
- Sildenafil 20 mg tid (n=67)
- Sildenafil 40 mg tid (n=64)
- Sildenafil 80 mg tid (n=69)

*P<.0001 vs placebo.

Change From Baseline (m²)

Week 4
- Placebo: 2
- Sildenafil 20 mg tid: 28
- Sildenafil 40 mg tid: 28
- Sildenafil 80 mg tid: 32

Week 12
- Placebo: -4
- Sildenafil 20 mg tid: 41
- Sildenafil 40 mg tid: 44
- Sildenafil 80 mg tid: 47
PAH: Sildenafil Therapy (SUPER-1)

Observed and Predicted Survival (n=141)

OBSERVED: sildenafil treated

Predicted: NIH

99% 96% 95%

78% 71% 65%

Kaplan-Meier Probability of Event

Number of Days Since Start of Sildenafil Treatment

Rationale for Combination Therapy in PAH

• Simultaneous targeting of multiple pathways
• Synergistic effects between different agents
• Overcomes treatment-limiting toxicity by using lower doses than in monotherapy
• Potential cost advantage of lower doses
• Delay worsening symptoms
• Prevent PAH progression (?)
• Combination therapies are standard of care in other diseases

• **Potential Risks:** Drug-drug interactions due to CYP-450 metabolism
Combination Therapy Regimens in PAH

Endothelin antagonists and prostanoids
- Bosentan + epoprostenol [49]
- Bosentan + iloprost [50–52]
- Bosentan + beraprost [51,52]

Endothelin antagonists and PDE5 inhibitors
- Bosentan + sildenafil [7,53]

PDE5 inhibitors and prostanoids
- Sildenafil + epoprostenol [6,55]
- Sildenafil + iloprost [57–59]
- Sildenafil + beraprost [61]
- Sildenafil + treprostinil [60]
STEP Study RESULTS:
Post-inhalation change in 6-MWD (Week 12)

<table>
<thead>
<tr>
<th></th>
<th>Iloprost + bosentan</th>
<th>Placebo + bosentan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meters Walked</td>
<td>Change from Baseline</td>
</tr>
<tr>
<td>Baseline (m)</td>
<td>Mean 336 ± 61</td>
<td>Mean 340 ± 73</td>
</tr>
<tr>
<td>Week 12 (m)</td>
<td>Mean 367 ± 84</td>
<td>Mean 343 ± 99</td>
</tr>
<tr>
<td></td>
<td>p-value (vs. baseline) 0.001</td>
<td>p-value 0.69</td>
</tr>
<tr>
<td>Placebo-adjusted Difference:</td>
<td>+26 m</td>
<td>p = 0.051</td>
</tr>
</tbody>
</table>

V. McLaughlin et al, AJRCCM December 2006
STEP: Time to Clinical Worsening at 12 Weeks
Iloprost + bosentan: 0 (0%) vs. Placebo + bosentan: 5 (15%)
$p = 0.02$ (Log-rank test)
Sildenafil added to Inhaled Iloprost

Wilkens et al. Circulation 2001
Symptomatic Pulmonary Arterial Hypertension

General treatment measures: oral anticoagulants, diuretics, digitalis, oxygen, {E/A}

Acute vasoreactivity testing {A for IPAH, E/C for other PAH}

Oral CCB {B for IPAH, E/B for other PAH}

Sustained Response?

Continue CCB

Yes < 15%

FC II

• Treprostinil SC {C}
• Sildenafil {A}
• Prostanoid

FC III

• Bosentan* {A}
• Sildenafil* {A}
• Prostanoid

FC IV

• Epoprostenol IV {A}
• Bosentan {B}
• Prostanoid

No ~ 90%

~6-8%

Combination Therapy?

Bosentan ↔ Sildenafil

No improvement or deterioration

Atrial septostomy and/or lung transplantation

Chest 2007; 131:1917
Future Directions

• Combination Therapy (e.g. COMPASS-2 trial)
• Early Therapy (WHO Class I and II)
• Novel agents that target the inflammatory and proliferative processes underlying PAH
 ♥ Statins
 ♥ Rho-kinase inhibitors (Fasudil)
 ♥ PDGF receptor antagonists - Imatinib mesylate (Gleevec)
 ♥ Ghrellin
 ♥ Peroxisome Proliferator-Activated Receptors agonists
 ♥ Vasoactive Intestinal Peptide
 ♥ Serotonin (5-HT) transport antagonists
 ♥ Immunosuppressive agents (Rapamycin)
Inhaled Vasoactive Intestinal Peptide

Petkov et al. JCI 2003;111:1339
Case Report: Imatinib (Gleevec) effect on exercise capacity and hemodynamics in PAH
Thank you!