Cardiogenic shock with preserved ejection fraction

Kanu Chatterjee
Ernest Gallo Distinguished Professor of Medicine
University of California San Francisco
Clinical and hemodynamic features of cardiogenic shock:

Clinical:
- Hypotension – systolic blood pressure – 90 mm Hg or less
- Impaired organ perfusion-oliguria, cold clammy skin, mental obtundation.

Hemodynamics:
- Systolic blood pressure – 90 mm Hg or less
- Cardiac index – 2.2 L/min/m2 or less
- Pulmonary capillary wedge pressure: 18 mm Hg or higher
 with right atrial pressure lower than pulmonary capillary wedge pressure
 (primary left ventricular failure)
- Right atrial pressure: 15 mm Hg or higher
 with pulmonary capillary wedge pressure usually less than right atrial pressure (primary right ventricular failure)
Cardiogenic shock with preserved ejection fraction.

Acute causes:

Cardiac tamponade – both right and left ventricular systolic function are preserved

Acute severe valvular regurgitation – both right and left ventricular systolic function are preserved
 - Mitral regurgitation
 - Aortic regurgitation
 - Primary tricuspid regurgitation

Acute massive pulmonary embolism – normal left ventricular ejection fraction, reduced right ventricular ejection fraction

Acute right ventricular infarction – normal left ventricular ejection fraction, reduced right ventricular ejection fraction
Cardiogenic Shock with Preserved Ejection Fraction

• Cardiac Tamponade

Mechanism:
marked increase in intrapericardial pressure
pan-diastolic restriction of ventricular filling
in shock: ventricles fill only during atrial systole
decreased SV, CO, BP, reflex tachycardia

Management: cardiac decompression
Cardiogenic Shock with Preserved Ejection Fraction

- Acute RV failure with normal LVEF:
 - Acute RVMI
 - Massive PE
- Mechanism: Low CO, and hypotension
 - Decreased LVSV
 - Decreased LV preload
 - Decreased RVSV
 - IVS shift towards LV
 - Pericardial constrain
 - Decreased LV contractility
Cardiogenic Shock with Preserved Ejection Fraction

- Acute RVMI:
 - Management: PCI
- Pulmonary embolism:
 - Anticoagulation
 - Thrombolytics
 - Embolectomy
 - Vasopressors
- Inotropic support
- Assist device
- Transplant
Cardiogenic Shock with Preserved Ejection Fraction

- Acute severe mitral regurgitation:
 - marked reduction in LV FSV-
 - decreased CO, hypotension
 - marked increase in regurgitant volume
 - normal LA size-
 - increased PCWP
Cardiogenic shock with preserved ejection fraction

- Acute severe mitral regurgitation
- Management:
 - Surgical replacement or repair
 - catheter based - experimental
 - Supportive to stabilize:
 - vasodilator-nitroprusside
 - IABP
Cardiogenic Shock with Preserved Ejection Fraction
Cardiogenic shock with preserved ejection fraction

- Acute severe aortic regurgitation
- Mechanism:
 - marked impairment of LV filling-
 - increased LV afterload
 - decreased SV and CO, BP
 - marked increase in LVDP-
 - increased PCWP
Cardiogenic shock with preserved ejection fraction

• Acute severe aortic regurgitation :
 • Management :
 • Surgical replacement
 • Catheter based replacement ?
 • Supportive :
 • vasodilator
 • IABP- contraindicated
Cardiogenic shock with preserved ejection fraction

Chronic causes:

Primary diastolic heart failure – normal left ventricular ejection fraction
Valvular heart disease – normal left ventricular ejection fraction
 - Aortic stenosis
 - Mitral stenosis
 - Aortic regurgitation
 - Mitral regurgitation
Pericardial disease – normal ejection fraction of both ventricles
 - Constrictive pericarditis
Myocardial disease – normal left ventricular ejection fraction
 - Restrictive cardiomyopathy
 - Hypertrophic cardiomyopathy
Pulmonary Arterial Hypertension- reduced right ventricular ejection fraction,
 - normal left ventricular ejection fraction
Figure 1. Echocardiographic Images in a Normal Person (Panel A) and the Patient with Diastolic Heart Failure (Panel B). The patient with diastolic heart failure has a thickened left ventricular wall and a normal left chamber volume.
A. Systolic dysfunction

Left ventricular volume

B. Normal

C. Diastolic dysfunction

Left ventricular volume
Cardiogenic shock with preserved ejection fraction

- Hypertrophic cardiomyopathy:
 - mechanism:
 - secondary mitral regurgitation
 - LVOT obstruction
 - decreased LVSV, CO, BP
 - decreased LV compliance
 - mitral regurgitation
 - increased PCWP
Cardiogenic shock with preserved ejection fraction

- Hypertrophic cardiomyopathy
- Management:
 - Vasopressors
 - Diuretics, NTG, inotropes, IABP
 - Contraindicated
 - ASA, myectomy, MVR
Cardiogenic Shock With Preserved Ejection Fraction

• Restrictive Cardiomyopathy:
 • Mechanism:
 • decreased ventricular compliance
 • marked restriction of ventricular filling
 • decreased SV and CO, BP
 • increased PCWP, RAP
 • Management: palliative, ? transplant
Cardiogenic shock with preserved ejection fraction

- Constrictive pericarditis
 - Mechanism:
 - restrictive ventricular filling
 - limited intrapericardial volume-
 - decreased LVSV and RVSV-
 - decreased CO
 - disproportionate increase in LVDP-
 - increased PCWP, RAP
Ventricular Discordance:
Cardiogenic shock with preserved ejection fraction

- Constrictive pericarditis
- Management:
 - Pericardiectomy
 - Diuretics
Cardiogenic shock with preserved ejection fraction

- Chronic isolated RV failure:
 - precapillary PAH
- mechanism: similar to acute RV failure
- management:
 - supportive: pulmonary vasodilators
 - transplant
• Thank you