Long-Term Outcome of Patients With Aortic Regurgitation: Medical Management and Surgical Indications

Melvin D. Cheitlin, M.D.
Emeritus Professor of Medicine
University of California, San Francisco
Goals in Treatment of Patients with Valve Disease

- Alleviate symptoms
- Avoid catastrophes
 - progressive CHF
 - sudden pulmonary edema
 - infective endocarditis
 - thromboemboli
 - sudden death
- Avoid early mortality
When is the proper time for surgical intervention?
Problems with Valve Replacement

- Perioperative mortality and morbidity

- Late valve problems

<table>
<thead>
<tr>
<th></th>
<th>Mechanical</th>
<th>Biologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability</td>
<td>For life of patient</td>
<td>5 - 20 yrs</td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>Mitral 3%/yr</td>
<td>? Atrial fib</td>
</tr>
<tr>
<td></td>
<td>Aortic 1%/yr</td>
<td></td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>+</td>
<td>? Atrial fib</td>
</tr>
<tr>
<td>Valve regurgitation</td>
<td>3-5% (1% severe)</td>
<td></td>
</tr>
<tr>
<td>Infecive endocarditis</td>
<td>1% first yr, 0.5%/yr after</td>
<td></td>
</tr>
<tr>
<td>Late mortality</td>
<td>3-4%/yr</td>
<td></td>
</tr>
</tbody>
</table>
Long-Term Survival After Valve Replacement

AVR 394
MVR 191

Randomized in OR
Biologic vs Mechanical

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Outcomes After 15 years

Hammermeister K, et al JACC 2000; 36:1152

<table>
<thead>
<tr>
<th>Thromboembolism</th>
<th>Biol</th>
<th>Mech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>Mitral</td>
<td>22%</td>
<td>18%</td>
</tr>
</tbody>
</table>
LV END SYSTOLIC PRESSURE

END SYSTOLIC PRESSURE – VOLUME RELATIONSHIP

LV END DIASTOLIC PRESSURE
Normal

First beat

Subsequent beats

EFFECT OF DECREASED CONTRACTILITY
Aortic Regurgitation - Pathophysiology

- AR is both a volume overload and an afterload burden
- Regurgitant volume increases LVEDV - eccentric hypertrophy
- Increased LV stroke volume \uparrow Systolic and \downarrow diastolic aortic pressure - \uparrow pulse pressure
- Peripheral signs related to wide pulse pressure and to rapid diastolic runoff
Common Etiologies of AR

Acute AR
- Infective endocarditis
- Dissection of the aorta
- Trauma
- Prosthetic valve disruption

Chronic AR
- Rheumatic heart disease
- Bicuspid aortic valve
- Ascending aortic aneurysm
- Aortitis - lues, granulomatous, Takayasu’s, Giant cell
- Spondylitis
- Hypertension
- Prolapse
- Marfan, Ehlers-Danlos, Reiter’s
- Discrete subaortic stenosis
- VSD with prolapsed cusp
- Anorectic drugs
Natural History of Asymptomatic Patients With Chronic AR

<table>
<thead>
<tr>
<th>Study (yr)</th>
<th># Pts</th>
<th>Mean F-U (yrs)</th>
<th>Progression (%/yr)</th>
<th>Mort (# Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Sx, death, LV dys)</td>
<td></td>
</tr>
<tr>
<td>Bonow (1983)</td>
<td>104</td>
<td>8</td>
<td>3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Scognamiglio (1986)</td>
<td>30</td>
<td>4.7</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Siemienczuk (1989)</td>
<td>50</td>
<td>3.7</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Scognamiglio (1994)</td>
<td>74</td>
<td>6</td>
<td>5.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Tornos (1995)</td>
<td>101</td>
<td>4.6</td>
<td>3.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Ishii (1996)</td>
<td>27</td>
<td>14.2</td>
<td>3.6</td>
<td>---</td>
</tr>
<tr>
<td>Borer (1998)</td>
<td>104</td>
<td>7.3</td>
<td>6.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Tarasoutchi (2003)</td>
<td>72</td>
<td>10</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Evangelista (2005)</td>
<td>31</td>
<td>7</td>
<td>3.6</td>
<td>---</td>
</tr>
<tr>
<td>Average</td>
<td>593</td>
<td>6.6</td>
<td>4.3</td>
<td>1.2</td>
</tr>
<tr>
<td>Study (yr)</td>
<td># Pts</td>
<td>Mean F-U (yrs)</td>
<td>Progression (%/yr) (Sx, death, LV dys) (Asx LV Dys)</td>
<td>Mort (# Pts)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td>----------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Bonow (1983)</td>
<td>104</td>
<td>8</td>
<td>3.8 0.5</td>
<td>2</td>
</tr>
<tr>
<td>Scogna-miglio (1986)</td>
<td>30</td>
<td>4.7</td>
<td>2.1 2.1</td>
<td>0</td>
</tr>
<tr>
<td>Siemienczuk (1989)</td>
<td>50</td>
<td>3.7</td>
<td>4.0 0.5</td>
<td>0</td>
</tr>
<tr>
<td>Scogna-miglio (1994)</td>
<td>74</td>
<td>6</td>
<td>5.7 3.4</td>
<td>0</td>
</tr>
<tr>
<td>Tornos (1995)</td>
<td>101</td>
<td>4.6</td>
<td>3.0 1.3</td>
<td>0</td>
</tr>
<tr>
<td>Ishii (1996)</td>
<td>27</td>
<td>14.2</td>
<td>3.6 ---</td>
<td>0</td>
</tr>
<tr>
<td>Borer (1998)</td>
<td>104</td>
<td>7.3</td>
<td>6.2 0.9</td>
<td>4</td>
</tr>
<tr>
<td>Tarasoutchi (2003)</td>
<td>72</td>
<td>10</td>
<td>4.7 0.1</td>
<td>0</td>
</tr>
<tr>
<td>Evangelista (2005)</td>
<td>31</td>
<td>7</td>
<td>3.6 ---</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>593</td>
<td>6.6</td>
<td>4.3 1.2</td>
<td>0.18%/yr</td>
</tr>
</tbody>
</table>
Natural History of Asymptomatic Patients With Chronic AR

<table>
<thead>
<tr>
<th>Study (yr)</th>
<th># Pts</th>
<th>Mean F-U (yrs)</th>
<th>Progression (%/yr)</th>
<th>Mort (# Pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonow (1983)</td>
<td>104</td>
<td>8</td>
<td>3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Scognamiglio (1986)</td>
<td>30</td>
<td>4.7</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Siemienczuk (1989)</td>
<td>50</td>
<td>3.7</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Scognamiglio (1994)</td>
<td>74</td>
<td>6</td>
<td>5.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Tornos (1995)</td>
<td>101</td>
<td>4.6</td>
<td>3.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Ishii (1996)</td>
<td>27</td>
<td>14.2</td>
<td>3.6</td>
<td>---</td>
</tr>
<tr>
<td>Borer (1998)</td>
<td>104</td>
<td>7.3</td>
<td>6.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Tarasoutchi (2003)</td>
<td>72</td>
<td>10</td>
<td>4.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Evangelista (2005)</td>
<td>31</td>
<td>7</td>
<td>3.6</td>
<td>---</td>
</tr>
<tr>
<td>Average</td>
<td>593</td>
<td>6.6</td>
<td>4.3</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Chronic Aortic Regurgitation
Natural History

- Congestive Heart Failure - 90% dead within two years
- NYHA Class III - IV - 37% five year survival
- “Free” aortic regurgitation - 50% ten year survival
- Trivial aortic insufficiency - 90% ten year survival
AR — PROPOSED MECHANISM OF DECREASED LV FUNCTION

AR

↑ SV

↑ PP

Dilates Aorta

Aortic Wall Stress

Compromises vasa vasora

Fragnents Elastic Fibers

↑ Collagen

↑ Age

↓ Aortic Distensibility

↑ Afterload on LV

? ↓ Cor Blood Flow

LV Dysfunction

Atherosclerosis
50 Asx AR pts
F-U time 44 months
Progressed to AVR-10
Annual Rate - 4±3%

ESVI < 60 cc/m² (n=35)

ESVI ≥ 60 cc/m² (n=15)

P = 0.0009

C

Asymptomatic Pts with Severe Aortic Regurgitation

104 pts with severe aortic regurgitation
Ave follow-up 7.3 years
39/104 reached a cardiac endpoint -
died suddenly, developed symptoms,
developed LV dysfunction with or
without symptoms
 4 died suddenly
 22 developed Sx
 13 developed LVdx with or without Sx

Progression rate 6.2% / yr
Asymptomatic Pts with Severe AR

For development of Asx LV dysfunction
the strongest univariate was
Absolute LVEF with exercise

Highest risk- exer LVEF ≤49% - 8.8%/yr
Lowest risk- Exer LVEF ≥57% - 0%/yr
Chronic Aortic Regurgitation - Indications for Surgery

Class 1
1. Symptomatic patients with severe AR irrespective of systolic function (B)
2. Asx patients with chronic severe AR and EF ≤0.50 at rest. (B)
3. Chronic severe AR undergoing CABG, surgery on aorta or other valves. [C]

Class Ila
1. Asx patients with chronic severe AR, EF >0.50, but with severe LV dilatation (EDD >75 mm or ESD > 55mm). (B)

Class IIb
1. Patients with moderate AR undergoing surgery on ascending aorta. [C]
2. Patients with moderate AR undergoing CABG. [C]
3. Asx patients with severe AR and EF ≥0.50 when LV dilatation > EDD 70 mm or ESD ≥ 50 mm when there is evidence of progressive LV dilatation, declining exercise tolerance, or abnormal hemodynamic response to exercise. [C]

Class III
1. Not indicated for Asx patients with mild, moderate or severe AR and EF >0.50 when degree of LV dilatation is not moderate or severe (EDD < 70 mm, ESD < 50 mm). (B)

Bonow RO, et al Circulation 2006; 114: e84
Functional Anatomy of AR: Accuracy, Prediction of Surgical Repairability and Outcome Implications of TEE

163 consecutive patients undergoing AR surgery

Mechanisms of AR categorized by preop TEE and at surgery as

- Type 1 aortic dilatation
- Type 2 aortic cusp prolapse
- Type 3 restrictive cusp motion or endocarditis

At surgery - mechanisms classified
 - Type 1 - 41 pts
 - Type 2 - 62 pts
 - Type 3 - 60 pts

Agreement between TEE and surgery 93% (Kappa = 0.90)

Valve repair 125 pts, AVR 38 pts

TEE predicted final surgical approach in 86% of pts undergoing repair
 and in 93% undergoing AVR
 and was determinant of valve repairability and postop outcome

(4-year freedom from > grade 2 AR, reoperation or death p= 0.04)
Long-Term Outcome of Surgically Treated Aortic Regurgitation: Influence of Guideline Adherence Toward Early Surgery

170 patients with chronic severe AR who had AVR

Group A - Followed guidelines - 60
Group B - Operated late according to guidelines - 110

Group A: Asx with LVEF 45-50% +/- or ESD 50-55 mm and NYHA II
Group B: NYHA III-IV or with LVEF < 45% or ESD > 55 mm

Prospectively followed-up 10±6 years

Tornos P, et al. JACC 2006; 47:1012
Long-Term Outcome of Surgically Treated Aortic Regurgitation: Influence of Guideline Adherence Toward Early Surgery

170 patients with chronic severe AR who had AVR

Group A - Followed guidelines - 60
Group B - Operated late according to guidelines - 110

Prospectively followed-up 10±6 years

Results:

44 died - Group A - 7 (12%) P= 0.001
Group B - 37 (37%)

Causes of death
Sudden death or heart failure
Group A - 1 patient P= 0.001
Group B - 20 patients

Tornos P, et al. JACC 2006; 47:1012
Overall Survival According to Group

Tornos P, et al. JACC 2006; 47:1012

<table>
<thead>
<tr>
<th>Group A</th>
<th>90±4%</th>
<th>86±5%</th>
<th>78±7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group B</td>
<td>75±8%</td>
<td>64±5%</td>
<td>53±6%</td>
</tr>
</tbody>
</table>
Echocardiographic Parameters During Follow-Up in Study Groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group A</th>
<th>Group B</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDD (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preop</td>
<td>71±7</td>
<td>75±8</td>
<td>0.001</td>
</tr>
<tr>
<td>1-yr postop</td>
<td>53±6</td>
<td>59±12</td>
<td>0.0001</td>
</tr>
<tr>
<td>Final F-U</td>
<td>53±7</td>
<td>57±9</td>
<td>0.021</td>
</tr>
<tr>
<td>ESD (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preop</td>
<td>48±6</td>
<td>55±10</td>
<td>0.0001</td>
</tr>
<tr>
<td>1-yr postop</td>
<td>38±6</td>
<td>44±14</td>
<td>0.0001</td>
</tr>
<tr>
<td>Final F-U</td>
<td>36±7</td>
<td>40±11</td>
<td>0.023</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preop</td>
<td>54±7</td>
<td>42±10</td>
<td>0.0001</td>
</tr>
<tr>
<td>1-yr postop</td>
<td>57±9</td>
<td>47±16</td>
<td>0.0001</td>
</tr>
<tr>
<td>Final F-U</td>
<td>55±9</td>
<td>51±12</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Tornos P, et al. JACC 2006; 47:1012
Aortic Regurgitation - Load Dependence Of Effective Regurgitant Orifice Area

Presumed mechanism of afterload reduction in AR is redistribution of LVSV
?

Mechanism is reduction in regurgitant orifice

10 open chest sheep - partial resection of aortic noncoronary cusp

Regurgitant flow - supravalvular flowmeter - pressures with micromanometer

Regurgitant orifice measured after AR created, with BP ↑ 15-25 mm Hg by dopamine
↓ 15-25 mm Hg by nitroprusside
Aortic Regurgitation - Load Dependence Of Effective Regurgitant Orifice Area

Presumed mechanism of afterload reduction in AR is redistribution of LVSV
- Mechanism is reduction in regurgitant orifice

10 open chest sheep - partial resection of aortic noncoronary cusp
- Regurgitant flow - supravalvular flowmeter - pressures with micromanometer

Regurgitant orifice measured after AR created, with BP ↑15-25 mm Hg by dopamine
- ↓15-25 mm Hg by nitroprusside

<table>
<thead>
<tr>
<th>Results:</th>
<th>Regurg Vol</th>
<th>Regurg Orifice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine</td>
<td>↑ 86±81% *</td>
<td>↑ 38±44% *</td>
</tr>
<tr>
<td>Nitrprusside</td>
<td>↓ 51±14% **</td>
<td>↓ 28±21% ***</td>
</tr>
</tbody>
</table>

* p<0.01
** p<0.001
*** p<0.007
Hydralazine vs Placebo in Asx Chronic Severe AR

Nifedipine in ASx Aortic Regurgitation

Scogamiglio, R et al, NEJM 1994;331:689

$n = 143$ Randomized to nifedipine 20 mg BID (69 pts) or digoxin 0.25 mg/d (74 pts) - Follow-up 6 yrs

<table>
<thead>
<tr>
<th></th>
<th>EDVI</th>
<th>ESVI</th>
<th>EF</th>
<th>MASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ml/m²</td>
<td>%</td>
<td>g/m²</td>
<td></td>
</tr>
<tr>
<td>Nifedipine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>126+/−16</td>
<td>52+/−9</td>
<td>64+/−4</td>
<td>139+/−16</td>
</tr>
<tr>
<td>End</td>
<td>112+/−28</td>
<td>51+/−22</td>
<td>62+/−14</td>
<td>108+/−34</td>
</tr>
<tr>
<td>Digoxin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>128+/−22</td>
<td>49+/−8</td>
<td>62+/−6</td>
<td>134+/−18</td>
</tr>
<tr>
<td>End</td>
<td>140+/−25</td>
<td>56+/−19</td>
<td>58+/−14</td>
<td>142+/−22</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NvD before</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>NvD end</td>
<td>0.003</td>
<td>0.004</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

At end of follow-up or at valve replacement
Incidence of AVR

Scognamiglio R, et al NEJM 1994; 331:689
Disruption of Angiotensin II type 1a Receptor -
Effect on Long-term Survival in Chronic, Severe AR in Mouse Model

Hypothesis: AT II type 1 receptor (AT 1) blockade can prevent LV remodeling in chronic AR and improve survival

Severe AR produced in wild type (WT) mice and AT I knockout (KO) mice

Mice surviving 4 weeks were considered chronic severe AR
Followed 50 weeks - WT 29, KO 31
Chronic AR in AT II Type 1a Receptor KO Mice - Survival

Survival at Baseline Four Weeks

LV Diastolic Diameter

% Fractional Shortening

LV Weight / Body Weight

Sirius Red stain - Interstitial collagen

Disruption of Angiotensin II type 1a Receptor -
Effect on Long-term Survival in Chronic, Severe AR in Mouse Model

Hypothesis: AT II type 1 receptor (AT 1) blockade can prevent LV remodeling in chronic AR and improve survival

Severe AR produced in wild type (WT) mice and AT I knockout (KO) mice

Mice surviving 4 weeks were considered chronic severe AR Followed 50 weeks - WT 29, KO 31

Baseline Echo 4 weeks after surgery - LV cavity and function same in both genotypes

16 weeks after baseline, KO mice had less LV dilatation, hypertrophy and interstitial fibrosis than WT mice

50 week mortality was significantly lower among KO mice

KO 45.2%
WT 86.2%
Aortic Regurgitation - Hydralazine vs Enalapril

70 pts Mod - severe asymptomatic AR
Randomized to Enalapril 5 mg to 20 mg/d
or Hydralazine 25 mg to 100 mg/BID
35 pts to each group

2-D echo at baseline, 6 mo and 1 yr
LVEDI, LVESI, LV Mass, LVmean wall stress,
LVEF, Treadmill exer time, RAAS, ADH,
and Aldosterone

Lin M, et al. JACC 1994;24:1046
Aortic Regurgitation

Hydralazine vs Enalapril

Echo Results

<table>
<thead>
<tr>
<th></th>
<th>Enalapril Baseline</th>
<th>1 yr</th>
<th>Hydralazine Baseline</th>
<th>1 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDVI</td>
<td>124+/-23</td>
<td></td>
<td>122+/-25</td>
<td></td>
</tr>
<tr>
<td>LVESVI</td>
<td>50+/-18</td>
<td></td>
<td>49+/-20</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>60+/-15</td>
<td></td>
<td>60+/-20</td>
<td></td>
</tr>
<tr>
<td>LVWS</td>
<td>389+/-38</td>
<td></td>
<td>391+/-40</td>
<td></td>
</tr>
<tr>
<td>LVMASS</td>
<td>130+/-24</td>
<td></td>
<td>128+/-26</td>
<td></td>
</tr>
</tbody>
</table>

** p< 0.01, *** p< 0.005, **** p< 0.001

Lin M, et al. JACC 1994;24:1046
<table>
<thead>
<tr>
<th></th>
<th>Enalapril</th>
<th>Hydralazine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>1 Yr</td>
</tr>
<tr>
<td>PRA (ng/ml/hr)</td>
<td>1.53 +/-1.13</td>
<td>2.29 +/-1.19 *</td>
</tr>
<tr>
<td>ALD (ng/dl)</td>
<td>18.9 +/-11.1</td>
<td>15.1 +/-9.8</td>
</tr>
<tr>
<td>ADH (pq/ml)</td>
<td>1.55 +/-0.98</td>
<td>1.41 +/-0.94</td>
</tr>
</tbody>
</table>

* p < .05

p < .01 & Hydralazine > Enalapril p < .001
Long-Term Vasodilator Therapy in Patients With Severe Chronic AR

Randomly assigned 95 patients with Asx, severe AR and normal EF

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nifedipine</td>
<td>20 mg q 12 hr</td>
</tr>
<tr>
<td>Enalapril</td>
<td>20 mg/d</td>
</tr>
<tr>
<td>No Rx</td>
<td></td>
</tr>
</tbody>
</table>

At 7 years:
- Nifedipine: 41%
- Enalapril: 50%
- No Rx: 39%

Long-Term Vasodilator Therapy in Patients With Severe Chronic AR

Long-Term Results of AVR in Patients With Chronic AR
Influence of Prior Medical Therapy on Results

Surgery indicated when EF fell < 50%

Treated with nifedipine before surgery
Average treatment before surgery 7.8 yrs

Yes
134 (Group A)

No
132 (Group B)

Op mortality
0.75%
0.76%

EF normalized
100%
72%

p Value
ns
<0.01

Scognamiglio R, et al. JACC 2005;45:1025
Survival After Surgery of Chronic AR Patients

Scognamiglio R, et al. JACC 2005;45:1025
Long-Term Results of AVR in Patients With Chronic AR
Influence of Prior Medical Therapy on Results

Surgery indicated when EF fell < 50%

Treated with nifedipine before surgery
Average treatment before surgery 7.8 yrs

<table>
<thead>
<tr>
<th></th>
<th>Yes (Group A)</th>
<th>No (Group B)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op mortality</td>
<td>0.75%</td>
<td>0.76%</td>
<td><0.01</td>
</tr>
<tr>
<td>EF normalized</td>
<td>100%</td>
<td>72%</td>
<td></td>
</tr>
</tbody>
</table>

At 10 Year Follow-up

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF</td>
<td>62±5 %</td>
</tr>
<tr>
<td>10 Year survival</td>
<td>85±4 %</td>
</tr>
</tbody>
</table>

Scognamiglio R, et al. JACC 2005;45:1025
Role of Vasodilators in AR

- Vasodilators can reduce LVEDV and LVESV increase LVEF
- There are many small studies that support use in Asx patients
- There are two randomized studies with opposite results
- Vasodilators can be used in Asx patients with moderate - severe AR but are not substitutes for AVR if symptoms occur or EF falls
SO LONG.......THANKS for listening
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Pathophysiology of Acute MR and AR

Normal
- LAP 10
- EDV 120
- ESV 50

Acute MR
- LAP 25
- TSV 70
- FSV 70
- RSV 0
- EDV 140
- ESV 40
- EF .72

Acute AR
- LAP 25
- EDV 150
- ESV 50
- TSV 100
- FSV 50
- RSV 50
- EF .66
Aortic Regurgitation - Hydralazine vs Enalapril

Hemodynamic Data

<table>
<thead>
<tr>
<th></th>
<th>Enalapril</th>
<th></th>
<th>Hydralazine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td>1 Yr</td>
<td>Base</td>
<td>1 Yr</td>
</tr>
<tr>
<td>HR</td>
<td>75 +/- 7</td>
<td>72 +/- 7</td>
<td>75 +/- 8</td>
<td>77 +/- 8</td>
</tr>
<tr>
<td>SysBP</td>
<td>173 +/- 17</td>
<td>138 +/- 12</td>
<td>171 +/- 18</td>
<td>138 +/- 9</td>
</tr>
<tr>
<td>DiaBP</td>
<td>82 +/- 13</td>
<td>71 +/- 9</td>
<td>81 +/- 13</td>
<td>70 +/- 9</td>
</tr>
<tr>
<td>Ex Dur</td>
<td>6.3 +/- 2.6</td>
<td>6.9 +/- 2.5</td>
<td>6.3 +/- 2.7</td>
<td>6.8 +/- 2.7</td>
</tr>
</tbody>
</table>

* p =< .05

* * p = <.005

Lin M, et al. JACC 1994;24:1046
Survival After Surgery of Chronic AR Patients

Scognamiglio R, et al. JACC 2005;45:1025
Survival - Prosthetic Valves

% Survival

Months after Operation

87%

75%

Alsip, Am J Med Vol. 78 (Suppl. 6B), 28 June 85
Representative TEE examples of the 4 subtypes of type 2 AR lesions.
C, Whole cusp prolapse. D, Fee edge fenestration.
Dynamic Nature of Aortic Regurgitant Orifice During Diastole