Emergency Dermatology

Lindy P. Fox, MD
Assistant Professor
Director, Hospital Consultation Service
Department of Dermatology
University of California, San Francisco

Emergency Dermatology
• The "don't miss" fever and rash list
 – Infectious
 • Meningococcemia
 • Rocky Mountain Spotted Fever
 • Toxin-mediated erythemas (Staph Scalded Skin Syndrome and Toxic Shock Syndrome)
 – Drug reactions
 • Drug hypersensitivity syndrome
 • Stevens-Johnson Syndrome
 • Toxic epidermal necrolysis
 – Inflammatory
 • Vasculitis
 • Erythroderma
 • Pustular psoriasis
 • Pemphigus vulgaris
 • Pyoderma gangrenosum
 • Kawasaki disease

Clues are in the primary lesion and distribution
• Purpura
 – Vasculitis
 – Rocky Mountain Spotted Fever
 – Meningococcemia
• Bullae
 – Pemphigus vulgaris
 – Bullous pemphigoid
 – SJS/TEN
• Erythroderma
 – Drug hypersensitivity
 – Pustular psoriasis
 – Toxin mediated erythema
 – TEN
 – Kawasaki disease
• Ulcer
 – Pyoderma gangrenosum
• Acral
 – Rocky Mountain Spotted Fever
• Dependent
• Widespread
 – Drug hypersensitivity
 – Pustular psoriasis
 – TEN
 – Toxin Mediated Erythemas
• Mucosal
 – Pemphigus vulgaris
 – SJS/TEN
• Periorificial
 – Staphylococcal scalded skin syndrome

Case 1
• 42 y.o. HIV+ male brought to the ED
 • febrile
 • rash, rapidly progressive
 • skin is painful
 • gritty sensation in eyes
 • oral pain, difficulty swallowing
 • Severely hypotensive ➔ IV fluids, norepinephrine
 • Sepsis? ➔ antibiotics are started
 • At home has been taking Septra for UTI

Case 1, Question 1
The most likely diagnosis is:
A. Drug Eruption
B. Staphylococcal Scalded Skin Syndrome
C. Autoimmune Blistering Disorder
D. Toxic Shock Syndrome
E. Severe viral exanthem
Skin biopsy

- subepidermal blister
- epidermal necrosis
- sparse dermal inflammatory infiltrate
- Diagnosis: severe bullous drug eruption

Case 1, Question 2

What is the most important consult besides dermatology to get in a patient with SJS/TEN?
A. Renal
B. Ophthalmology
C. Allergy/immunology
D. Wound care
E. GI/liver

Emergency Dermatology: Bullae

1. SJS/TEN
2. Pemphigus vulgaris
3. Bullous pemphigoid

Cutaneous Drug Reactions - Immunologic mechanisms

- IgE dependent (TI)
 - Urticaria, angioedema, anaphylaxis
- Cytotoxic drug-induced reactions (TII)
 - Pemphigus, petechiae 2° drug-induced thrombocytopenia
- Immune complex-dependent (TIII)
 - Vasculitis, serum sickness, certain urticarias
- Delayed-type, cell-mediated (TIV)
 - Exanthematous, fixed, and lichenoid drug eruptions
 - Stevens-Johnson syndrome and toxic epidermal necrolysis

Urticarial Drug Eruption

- Immunologic
 - Mediated by IgE
 - Risk of anaphylaxis
 - Example: Penicillin
 - NEVER GIVE PCN to someone who gets "hives" from PCN
- Non-immunologic
 - Non specific mast cell degranulators
 - Example: opiates, contrast dye
 - OK to rechallenge (but premedicate)
Urticarial Drug Eruption

- Treatment
 - Antihistamines for simple urticaria
 - Anaphylaxis
 - H1 blocker (diphenhydramine)
 - H2 blocker (ranitidine, famotidine)
 - Epinephrine (IM or IV)
 - Methylprednisolone or dexamethasone
 - Cardiovascular support
 - MedAlert bracelet

Drug Eruptions: Degrees of Severity

Simple
- Morbilliform drug eruption
- Minimal systemic symptoms

Complex
- Drug hypersensitivity reaction
 - Stevens-Johnson syndrome (SJS)
- Toxic epidermal necrolysis (TEN)
- Systemic involvement
 - Potentially life threatening

Timing is everything: Drug charts

<table>
<thead>
<tr>
<th>Day</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>vancomycin</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metronidazole</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceftriaxone</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>norepinephrine</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceftriaxone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>docusate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ heparin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ceftriaxone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>vancomycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

PMH: h/o “UTI” self-treated with septra, h/o “drug rashes”

Common Causes of Cutaneous Drug Eruptions

- Antibiotics
- NSAIDs
- Sulfa
- Allopurinol
- Anticonvulsants

Morbilliform (Simple) Drug Eruption

- common
- erythematous macules, papules
- pruritus
- no systemic symptoms
- begins in 2nd week
- risk factors: EBV, HIV infection
- treatment:
 - D/C med if severe
 - symptomatic treatment:
 - diphenhydramine, topical steroids
Hypersensitivity Reactions

- Skin eruption associated with systemic symptoms and alteration of internal organ function
- Begins 2-6 weeks after medication started
 - time to abnormally metabolize the medication
- Classic culprits
 - Aromatic anticonvulsants THESE CROSS-REACT
 - phenobarbital, carbamazepine, phenytoin
 - Allopurinol
 - Dapsone
 - NSAIDs

Clinical features (General)

- Rash (morbilliform initially)
- Fever (precedes eruption by day or more)
- Pharyngitis
- Hepatitis
- Hematologic abnormalities
 - eosinophilia
 - atypical lymphocytosis
- Lymphadenopathy
- Facial edema

Cutaneous Features

- Clinical picture is often polymorphic
 - Rash begins as a morbilliform eruption
 - Edematous (vesicles, tense bullae)
 - Pustular
 - Erythroderma
- Face involved
 - Typically spared in morbilliform eruptions

Treatment

- Stop the medication
- Avoid cross reacting medications!!!!
 - Aromatic anticonvulsants cross react (70%)
 - Phenobarbital
 - Phenytoin
 - Carbamazepine
 - Valproic acid and Keppra generally safe
- Systemic steroids (Prednisone 1.5-2mg/kg) tapering dose over 1-3 months
- Allopurinol hypersensitivity may require other immunosuppressive therapy
 - E.g. Cellcept
 - NOT azathioprine (also metabolized by xanthine oxidase)
- Completely recover, IF the hepatitis resolves

Bullous Drug Reactions

- Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) fall into this category
- Medications
 - Sulfonamides
 - Anticonvulsants
 - Allopurinol
 - NSAIDs

Stevens-Johnson (SJS) versus Toxic Epidermal Necrolysis (TEN)

<table>
<thead>
<tr>
<th>Disease</th>
<th>BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJS</td>
<td>< 10%</td>
</tr>
<tr>
<td>SJS/TEN overlap</td>
<td>10-30%</td>
</tr>
<tr>
<td>TEN “with spots”</td>
<td>> 30%</td>
</tr>
<tr>
<td>TEN “without spots”</td>
<td>Sheets of epidermal loss > 10%</td>
</tr>
</tbody>
</table>
Stevens-Johnson (SJS) versus Toxic Epidermal Necrolysis (TEN)

<table>
<thead>
<tr>
<th>SJS</th>
<th>TEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical targets</td>
<td></td>
</tr>
<tr>
<td>Mucosal membranes ≥ 2</td>
<td></td>
</tr>
<tr>
<td>Causes:</td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
</tr>
<tr>
<td>Mycoplasma</td>
<td></td>
</tr>
<tr>
<td>HSV</td>
<td></td>
</tr>
<tr>
<td>Erythema, bullae</td>
<td></td>
</tr>
<tr>
<td>Skin pain</td>
<td></td>
</tr>
<tr>
<td>Mucosal membranes ≥ 2</td>
<td></td>
</tr>
<tr>
<td>Causes:</td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
</tr>
</tbody>
</table>

Stevens-Johnson Syndrome (SJS)

- **Prodrome**
 - Fever, respiratory symptoms, headache, vomiting, diarrhea
- **Clinical morphology:**
 - Round macules and papules, red on the periphery and purple in the center (like a target)
 - Two or more mucous membranes (eyes, mouth, genitalia) involved
 - Can progress to resemble toxic epidermal necrolysis (TEN)

SCORTEN

- **Criteria**
 1. Age > 40 yrs
 2. Presence of malignancy
 3. BUN > 27 mg/dL
 4. Glucose >252 mg/dL
 5. Pulse > 120 bpm
 6. Bicarbonate <20mEq/l
 7. BSA > 10%
- **Mortality rates**
 - 0-1 3.2%
 - 2 12.2%
 - 3 35.3%
 - 4 58.3%
 - ≥5 90%

Toxic Epidermal Necrolysis (TEN)

- Life threatening blistering reaction
- Early on, patients complain of skin pain
- Skin becomes red, then develops bullae that slough to reveal denuded dermis
 - Nikolsky sign present
- Medical emergency- call dermatology immediately

SJS/TEN: Emergency Management

- Stop all unnecessary medications
 - The major predictor of survival and severity of disease
- **Treatment**
 - Topical
 - Aquaphor and Vaseline gauze
 - Systemic
 - Consider antivirals
 - Check for Mycoplasma- 25% of SJS in pediatric patients
 - Controversial
 - SJS: high dose corticosteroids
 - TEN: IVIG 0.5-1g/kg/d x 4d
 - Refer to burn unit early
 - Reduces risk of infection and reduces mortality to 5%
 - Call Ophthalmology

Pathogenesis of TEN

- Normal skin
 - Express Fas (CD95)
- TEN
 - Induction of Fas L → Fas: Fas L binding induces widespread apoptosis of keratinocytes

IVIG (intravenous immunoglobulin) as a treatment for TEN

Human IVIG has antibodies against Fas L

IVIG blocks Fas mediated apoptosis in vitro & Arrests development of TEN in vivo

IVIG for TEN

Dose and Response

- Recommended dose: 0.5-1.0g/kg/d over 3-5 days
- Arrest in disease progression in 24-48 hours
- Complete re-epithelialization within 4-10 days
- Decreases mortality?*
 - Decreases to 6-12% in some studies
 - Other studies report increased mortality
- 7 of 8 studies (non-controlled clinical studies with ≥ 10 pts)
 - Overall mortality benefit of IVIG in doses > 2g/kg
- Risk factors for failing to respond to IVIG**
 - Delayed use of IVIG (≥ day 10), lower dose (2g/kg total), underlying chronic diseases, higher BSA involved (>65%), older age
- Also batch-to-batch variation in anti-Fas activity

*Semin Cutan Med Surg 2006. 25:91-3
^ Allergology Int 2006. 55: 9-16
**Arch Derm 2003. 131:26-32

Bullous Drug Reactions: Supportive Care

- Protect exposed skin
- Prevent and treat secondary infection (sepsis)
- Monitor fluid and electrolyte status
- Nutritional support
 - Hyperglycemia assoc with increased morbidity/mortality
- Warm environment
- Refer to burn unit early
 - Reduces risk of infection and reduces mortality to 5%
- Respiratory care
- Ophthalmology consult
- Death (up to 25% of patients with more than 30% skin loss, age dependent)

Signs of a Serious Cutaneous Drug Eruption

- Cutaneous
 - Facial involvement
 - Confluent erythema
 - Skin pain
 - Epidermal detachment
 - Nikolsky sign
 - Mucous membrane involvement
- Systemic
 - High fever
 - Lymphadenopathy
 - Arthralgias/arthritis
 - Shortness of breath, wheezing, hypotension
- Laboratory
 - Eosinophilia
 - Lymphocytosis with atypical lymphocytes
 - Elevated liver function tests
 - Renal failure

Bullous Pemphigoid

- Most common autoimmune bullous disease
- Favors elderly (65-75)
- Unilocular, tense, bullae, some on erythematous base
- Bullae usually large (>1 cm)
- Favors inner arms, thighs, and flanks
- 1/3 of patients have oral erosions
- Diagnosis: Biopsy for histology and direct immunofluorescence

Drug Induced Bullous Pemphigoid

- Drug “unmasks” patients predisposition to develop BP?
- Drugs
 - Penicillamine
 - Furosemide
 - Captopril, enalapril
 - Penicillin
 - Sulfasalazine
 - Nalidixic acid
 - Beta blockers
Pemphigus Vulgaris

- Elderly
- Widespread, larger friable blisters, erosions
- 50% present with oral erosions and 100% develop oral lesions at some time
- Flaccid blisters anywhere on the skin
- Blisters do not heal, but leave very painful erosions up to 10 cm in diameter
- Gradually worsening, progressive course in most patients
 - Until prednisone became available, considered a fatal disease
- Treated with systemic immunosuppressants

Images courtesy of Siegrid Yu, MD

Case 2

- 37 yo man with hepatitis C infection presents with fever, joint pain, and rash
- A skin biopsy confirms leukocytoclastic vasculitis

Case 2, Question 1

In this patient, the test most likely to be abnormal is:
A. Antinuclear antibody
B. Rheumatoid factor
C. Cryoglobulins
D. Urinalysis
E. Stool guaiac

Case 2, Question 1

In this patient, the test most likely to be abnormal is:
A. Antinuclear antibody
B. Rheumatoid factor
C. Cryoglobulins
D. Urinalysis
E. Stool guaiac

Emergency Dermatology: Purpura

1. Vasculitis
2. Rocky Mountain Spotted Fever
3. Meningococcemia
Leukocytoclastic Vasculitis

Etiology
- Conditions associated with LCV
 - Idiopathic (45-55%)
 - Infection (15-20%)
 - Inflammatory diseases (15-20%)
 - Medications (10-15%)
 - Malignancy (<5%)
 - Other
 - Hypergammaglobulinemic purpura of Waldenström
 - HIV
 - Cocaine use (p-ANCA +)

Differential Diagnosis
- Infection
 - Post strep GN
 - Hepatitis B
 - SBE
- Hypersensitivity
 - Henoch-Schönlein purpura
 - Serum sickness
 - Medication
- Rheumatic disease
 - SLE
 - RA
 - Sjögren’s syndrome
- Mixed cryoglobulinemia (HCV)
- Malignancy associated
 - CLL
 - Multiple myeloma
 - Lymphoma
 - Hodgkin’s disease
- ANCA associated vasculitis
 - Wegeners granulomatosis
 - Microscopic polyangiitis

Clinical Presentation
- Degree of purpura increases from cephalad to caudad
- Favors dependent areas (lower legs)
- May itch, sting, or burn
- Associated symptoms: fever, malaise, arthralgias/arthritis
- May affect blood vessels in many organs
 - kidneys, joints, and gut most frequently

Evaluation
- H+P, including medications and ROS
- Skin biopsy for H+E, DIF
- Lab tests (initial):
 - Blood culture
 - CBC with differential
 - Urinalysis with micro
 - Creatinine
 - Stool guaiac
 - ASO, throat culture
 - Hepatitis B, C serologies
 - ANA, Complement, ANCA
 - Cryoglobulins
 - SPEP/IFE

Treatment
- Treat underlying cause
- First line
 - NSAIDS
 - Colchicine 0.6 mg BID
 - Dapsone 50-100 mg BID
 - Prednisone (60-80mg/day) for short course
- Second line
 - Mycophenolate mofetil, methotrexate, azathioprine, cyclophosphamide
Meningococcemia

- **Organism:** *N. meningitidis*
- Skin lesions typically associated with acute sepsis
- Acutely ill
- Widespread eruption
 - petechiae
 - palpable purpura
 - stellate, gunmetal gray
- Can progress to DIC/purpura fulminans

Higher risk:
- Military recruits
- Close contact with an index case
- Travel to an endemic area
- Asplenia
- College students living in dormitory

Diagnosis
- Culture blood, skin, CSF
- Skin lesions demonstrate organism in 70% cases
- Latex agglutination tests
 - Group A,B,C,Y, and W-135 antigens in CSF and urine

Treatment
- Penicillin
- Chloramphenicol
- Ceftriaxone

Rocky Mountain Spotted Fever

- **Organism:** *Rickettsia rickettsii*
- Tick: *Dermacentor or Ixodes*
- Summer, early fall
- Tick bite typically painless
- Incubation period: 6-8 days
- Initial symptoms:
 - Flu-like syndrome: fever, chills, HA, myalgia, malaise
 - GI symptoms: nausea, vomiting, diarrhea, abdominal pain
- Cutaneous lesions begin 2-4 days after fever

Diagnosis
- Laboratory tests non-specific
 - Normal CBC or leukocytosis, leukopenia, anemia (5-25%)
 - Thrombocytopenia (30-50%)
 - Hyponatremia common
 - Elevated LFTs, bil, CK, LDH
 - Skin biopsy- organisms present in vessels
- Serology
- Mortality (untreated) 20-25%

Treatment
- Doxycycline
- Chloramphenicol

RMSF: cutaneous eruption

- Erythematous macules- wrists and ankles
- Lesions develop central petechiae
- Spreads centripetally
- Involves trunk, extremities, palms, soles; spares face
Case 3

- 55 yr old male
- COPD, HTN, non-small cell lung cancer and mild psoriasis
- Presents with low grade fever, shaking chills, and diffuse erythema (erythroderma)
- Meds:
 - ACE inhibitor x 3 months
 - 1 week of pulsed prednisone with rapid taper for COPD flare

Case 3, Question 1
The most likely diagnosis is:
A. Drug eruption due to ACE inhibitor
B. Paraneoplastic syndrome due to non-small cell lung cancer
C. Sézary syndrome (cutaneous T-cell lymphoma)
D. Flare of psoriasis due to prednisone taper
E. Staphylococcal Scalded Skin Syndrome

Case 5, Question 1
The most likely diagnosis is:
A. Drug eruption due to ACE inhibitor
B. Paraneoplastic syndrome due to non-small cell lung cancer
C. Sézary syndrome (cutaneous T-cell lymphoma)
D. Flare of psoriasis due to prednisone taper
E. Staphylococcal Scalded Skin Syndrome

Emergency Dermatology: Erythroderma

1. Pustular psoriasis
2. Toxin mediated erythemas
3. Kawasaki disease
4. Drug eruptions (hypersensitivity, TEN)

Pustular Psoriasis

- Often occurs when known psoriatrics are given systemic steroids
- When the steroids are tapered, the psoriasis flares, often with pustules
- Can be life threatening
 - High cardiac output state
 - Electrolyte imbalance
 - Respiratory distress
 - Temperature dysregulation
Psoriasis Aggravators

- Medications
 - Systemic steroids
 - Beta blockers
 - Lithium
 - Hydroxychloroquine
- Strep infections
 - Guttate psoriasis in children
- Trauma
- Sunburn
- Severe life stress
- HIV
 - Up to 6% of AIDS patients develop psoriasis
- Alcohol for some
- Smoking for some

Treatment for Psoriasis

- Topical therapy
 - Steroid ointment (start mid-potency)
 - Calcipotriene (Dovonex)
 - Tar
- Phototherapy- refer to dermatologist
 - Broadband UVB or Narrowband UVB
 - PUVA: psoralens + UVA
- Systemic therapy- refer to dermatologist
 - Acitretin (oral retinoid)
 - Methotrexate, cyclosporine
 - Biologics
 - etanercept, infliximab, adalimumab, alefacept, efalizumab
Systemic steroids are NOT on this list!

Toxin Mediated Erythemas

- Staphylococcal Scalded Skin Syndrome
- Streptococcal Toxic Shock Syndrome
- Staphylococcal Toxic Shock Syndrome

Staphylococcal Scalded Skin Syndrome

- Caused by Staphylococcal exfoliative exotoxins A and B of Phage group II strains 55, 71
- Most common in children < 6 years of age
- Rare in adults unless immunosuppressed (HIV) or renal failure (can’t clear toxin, which is renally excreted)
- Mortality
 - Children 3-4%, adults >50%

Staphylococcal Scalded Skin Syndrome

- Prodrome
 - Fever, malaise, irritability, severe skin tenderness
- Erythema begins in head and neck area, then rapidly progresses to the rest of the body
- Flaccid bullae develop, giving the skin a wrinkled appearance
- 1-2 d later, bullae are sloughed, leaving moist skin, sometimes a yellow crust is present
- Exfoliation begins in the flexural areas
- Perioral crusting and fissuring is common
- Re-epithelialization without scarring occurs in 10-14 days

Staphylococcal Scalded Skin Syndrome

- Diagnosis
 - Clinical
 - Culture any suspected site of infection
 - Skin foci- pustule, furuncle, erosions, etc
 - Intact bullae will be culture negative (unlike bullous impetigo)
 - Conjunctiva, nasopharynx, feces
 - Blood cultures
 - Typically negative in children, can be positive in adults.
 - Skin biopsy (to differentiate from TEN)
- Treatment
 - Admit
 - β-lactamase-resistant antibiotic (dicloxacillin, cephalaxin)
 - Addition of clindamycin can help clear the toxin
 - Neonates need isolation to avoid outbreaks in other neonates
Streptococcal Toxic Shock Syndrome
• Criteria
 • Isolation of group A streptococci from normally sterile site OR
 • Isolation of group A streptococci from non-sterile site
 • AND
 • Hypotension (SBP<90mmHg for adults)
 • AND
 • Two or more
 – Renal impairment
 – Coagulopathy (platelets < 100000/mm³ or DIC)
 – Elevated LFTs
 – ARDS
 – Generalized erythematous macular rash +/- desquamation
 – Soft tissue necrosis (necrotizing fasciitis, myositis, gangrene)

Streptococcal Toxic Shock Syndrome
• Due to exotoxin producing strains of Group A, β-hemolytic streptococcus (S. pyogenes)
• Affects healthy people, ages 20-50
• Skin portal of entry 80%
• 50% have necrotizing fasciitis
• Mechanism of disease
 – Streptococcal M proteins and exotoxins act as “superantigens”
 – Bind to MHC class II APCs and T cell receptors
 – Leads to T cell activation, cytokine induction (TNF-α, IL-1, IL-6)

Staphylococcal Toxic Shock Syndrome
• Historically associated with menstruating women and tampon use in 1980s
• Currently most commonly seen
 – after surgical procedure, with focal pyodermas or deep abscesses, postpartum, nasal packing, insulin pump infusion site
• Due to infection or colonization with strain of S. aureus that produces toxic shock syndrome toxin-1 (TSST-1)
• TSST-1
 – Acts as a superantigen
 – Is directly toxic to organs
 – Impairs clearance of endogenous exotoxins derived from gut flora
Staphylococcal Toxic Shock Syndrome

- Sudden onset high fever, myalgias, vomiting, diarrhea, headache, pharyngitis
- Rapid progression to shock
- Diffuse scarlatiniform exanthem
 - Starts on trunk and spreads to extremities
 - Erythema and edema of palms and soles
 - Erythema of mucous membranes
 - Strawberry tongue, conjunctival erythema
 - 1-3 weeks later, desquamation of hands and feet

Staphylococcal Toxic Shock Syndrome

- Diagnosis
 - High index of suspicion
 - Criteria

- Treatment
 - Admit
 - Supportive care (IV fluid, pressors)
 - Remove packing, etc
 - IV antibiotics
 - Clindamycin
 - IVIG

Kawasaki Disease Criteria

- Fever > 39.6°C
- Rash- diffuse macular erythroderma
- Desquamation: 1-2 weeks after the onset of the illness (typically palms and soles)
- Hypotension (SBP<90 mmHg for adults)
- Involvement of 3 or more of the following organ systems
 - GI, muscular, CNS, renal, hepatic, mucous membranes (erythema), hematologic (platelets < 100000/mm³)
- Lack of evidence for another cause
 - Blood, throat, CSF cultures negative
 - Serologies for RMSF, leptospirosis, measles negative

Kawasaki Disease

- Most severe complication is cardiac
 - Coronary artery aneurysms (10%)
 - EKG changes (PR, QT prolongation; ST, T wave changes)
 - Angina, myocardial infarction

Kawasaki Disease

- Laboratory findings
 - Leukocytosis, anemia, elevated ESR, sterile pyuria
 - Thrombocytosis
 - Highest in second week, same time as highest risk of coronary artery thrombosis

- Echocardiogram: coronary artery aneurysms

Clin Exp Dermatol. 2001; 26
Kawasaki Disease

• Treatment
 – IVIG
 • 2g/kg single infusion
 – Aspirin
 • Must be given within 10d of fever onset
 • 80-100mg/kg/d during acute febrile phase, then decrease to
 3-5mg/kg/d after fever subsides

• Prognosis (untreated)
 – 75% resolution without sequelae
 – 25% abnormal coronary arteries with 1-2% mortality
 in acute phase
 – Leading cause of acquired heart disease in children
 – Risk factor for adult ischemic heart disease and
 sudden death in young adults

Kawasaki Disease-Like Syndrome (KDLS) in HIV

• Reported in 13 patients
 – 11 adults
 – 2 children
• Moderate-to-severe immune dysfunction
 (CD4 10-298 cells/mm²)

Kawasaki Disease-Like Syndrome (KDLS) in HIV- Clinical Features

• Classic KD
 – Fever ≥ 5 days
 – Conjunctivitis
 – Exanthem
 – Cervical LAD
 – Hand/foot edema
 – Oropharyngeal changes

• KDLS of HIV
 – More GI complaints
 – Less prominent cervical LAD
 – Laboratory parameters may be normal
 • ESR or CRP
 • Platelet count
 – Coronary artery aneurysm not reported

Kawasaki Disease-Like Syndrome in HIV- Course and Treatment

• Similar therapies as used in classic KD
 – Aspirin: start at 80mg/kg/d X 2 weeks
 – Pooled IVIG: 2g/kg over 10-12 hours
• Initiate or optimize HAART
• Untreated, course similar to classic KD
• Higher rate of relapse

http://www.pediatrics.ucsd.edu/kawasaki/kdhiv.asp

Case 4

• 37 yo woman with inflammatory bowel disease
• Rapidly progressive, painful ulceration of lower leg appears 3 days after bumping her leg on a chair
Case 4, Question 1

- The most appropriate treatment for this disorder is
 A. Systemic steroids
 B. Intravenous antibiotics
 C. Surgical debridement
 D. Compression dressing
 E. Wet to dry dressings

Pyoderma Gangrenosum

- Rapidly progressive (days) ulcerative process
- Begins as a small pustule which breaks down forming an ulcer
- Undermined violaceous border
- Expands by small peripheral satellite ulcerations which merge with the central larger ulcer
- Occur anywhere on body
- Triggered by trauma (pathergy) (surgical debridement, attempts to graft)

Case 4, Question 2

- All of the following underlying diseases are strongly associated with this condition except:
 A. Rheumatoid arthritis
 B. Inflammatory bowel disease
 C. Acute myelogenous leukemia
 D. IgA monoclonal gammopathy
 E. Tuberculosis infection

- All of the following underlying diseases are strongly associated with this condition except:
 A. Rheumatoid arthritis
 B. Inflammatory bowel disease
 C. Acute myelogenous leukemia
 D. IgA monoclonal gammopathy
 E. Tuberculosis infection
Pyoderma Gangrenosum

- Most cases have no underlying cause
- Associations:
 - Inflammatory bowel disease (1.5%-5% of IBD patients get PG)
 - Rheumatoid arthritis
 - Seronegative arthritis
 - Hematologic abnormalities

Pyoderma Gangrenosum Treatment

- AVOID DEBRIDEMENT
- Refer to dermatology
- Treatment of underlying disease may not help PG
 - Topical therapy:
 - Superpotent steroids
 - Topical tacrolimus (up to .3%)
 - Systemic therapy:
 - Systemic steroids
 - Cyclosporine or Tacrolimus
 - Celcipt
 - Thalidomide
 - TNF-blockers (Remicade)

The end. (whew!)