OVERVIEW

- Burden of illness of pain of spinal origin
- Natural History
- Evaluation of patients with pain of spinal origin
- Management of common causes of back pain

Low Back Pain

General Population

- Non specific low back pain:
 - Lumbago, myofascial syndromes, mechanical LBP, muscle spasms, back sprain, back strain
 - 85% of pts

- Weight lifters 17,000N
- Golf swing 6100 – 7000N force across L3-L4 disc
- Rowers 6100N
- Football linemen during a block 8500N
- Rower 6100N
Sprains and Strains

- Strain – disruption of muscle fiber within muscle belly or musculotendinous junction
- Sprain – subcatastrophic stretch of one or more of the spinal ligaments

“I found no data delineating the exact tissue injury involved in low-back sprains in athletes in my review of the literature”

Specific Low Back Pain

- Systemic disease, infection, trauma, structural deformity
 - Adult Scoliosis
 - Spondylolisthesis
 - Herniated disc
 - Compression fracture
 - Tumor
 - others
- 15% of pts

NSLBP

- Lifetime prevalence: 60-85%
- 1 year prevalence: 15-45%
- Incidence
 - Adults 10 - 30%
 - Adolescents 15%
 - Children ? 0%
- Peak incidence: 35-55 yrs
- 80% recover 4-6 wks
- 90% recover 12 wks
- If no recovery by 6 months likelihood of patient returning to normal activities 40-55%
- 10% chronic pain

NSLBP

- Expense of Back Pain:
 - 1% workforce chronically disabled
 - 1% workforce temporarily disabled
 - 2nd most common reason for physician visits
 - 3rd most common reason for surgical procedure
 - 5th most common reason for hospitalization
 - Indirect costs: $25-100 billion / yr
BURDEN OF ILLNESS IN ATHLETES

- Back pain in athletes: 1 - >30%
- Adolescent athletes: 46% vs 18% controls
- Prevalence among former elite athletes 29% vs 44% controls

Risk Factors in the Athlete

- Age
- Type of sport played
- Episodes of previous back pain
 - 3x increase if prior back pain
 - 6x increase of subsequent episodes if player started with back pain

Bony Anatomy

Sports with high incidence of back pain include:
- Wrestling
- Football
- Gymnastics
- Soccer

Degenerative disc disease and spondylolysis most common cause of back pain

References:
Innervation of the Lumbar Spine:
1) Zygoapophyseal Joints: Medial Branch of Dorsal Primary Ramus
2) Structures within Spinal Canal: Sinuvertebral Nerve
3) Lateral Disc, ALL: Branches of Grey Ramii Communicantes and Ventral Primary Ramus
4) Basivertebral nerve- vertebrogenic back pain

Neurogenic Claudication
- Leg pain derived from ischemia to the nerve root
- Spinal stenosis
 - extended posture closes the foramen and cuts off the blood supply
 - Flexed posture opens the foramen

Separating NSLBP from SLBP
- Mechanism of Injury / duration and onset / pain patterns
- Red flags
- Yellow flags
- Physical exam
- Imaging
- F/U

Red Flags
- Age > 50
- Hx of cancer – LR 15
- Unexplained weight loss
- Failure to improve after 6-12 weeks of therapy
- No relief with bedrest
- Night pain
- Combination – LR 2.5
Yellow Flags

- A belief that back pain is harmful or potentially severely disabling
- Fear-avoidance behavior and reduced activity
- Catastrophising – poor coping strategies
- Tendency to low mood and withdrawal from social interaction
- Expectation of passive treatments rather than a belief that active participation will help

Characteristic Pain Patterns

<table>
<thead>
<tr>
<th>Condition</th>
<th>Age Group</th>
<th>Sitting/Standing</th>
<th>Back/Leg</th>
<th>Flexion/Extension</th>
<th>Walking Tolerance</th>
<th>Night Pain/Parasthesia</th>
<th>Peripheral / Sneeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervertebral Herniation</td>
<td>20-50</td>
<td>Sitting</td>
<td>Leg</td>
<td>Flex</td>
<td>No limit</td>
<td>No</td>
<td>Pain</td>
</tr>
<tr>
<td>Degenerative Pain Instability</td>
<td>20-50</td>
<td>Sitting</td>
<td>Back</td>
<td>Flex</td>
<td>No limit</td>
<td>No</td>
<td>Pain</td>
</tr>
<tr>
<td>Spondylolisthesis</td>
<td>>50</td>
<td>Stand</td>
<td>Both</td>
<td>Caudal</td>
<td>Limited</td>
<td>No</td>
<td>No Pain</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>>50</td>
<td>Const</td>
<td>Back</td>
<td>Flex</td>
<td>Limited</td>
<td>Yes</td>
<td>Pain</td>
</tr>
<tr>
<td>Infection</td>
<td>>0</td>
<td>Const</td>
<td>Back</td>
<td>Flex</td>
<td>Limited</td>
<td>Yes</td>
<td>Pain</td>
</tr>
</tbody>
</table>

Physical Exam

- Inspection – coronal / sagittal balance / skin
- Palpation – masses / tenderness
- ROM
- Neurological Assessment
 - Motor exam – myotomes / specific muscles
 - Sensory exam – dermatomes / peripheral nerves
 - Reflexes – increased / decreased
 - Nerve Tension Signs – Lesaque / Spurling
- Coordination – rapid flex/ext of hands
- Gait

Inspection
Inspection

Myelopathy vs Radiculopathy

Nerve Tension Tests

OTHER TESTS

- FABER TEST – tests the SI joint
- HIP EXAM
 - TRENDELENBURG TEST
- SHOULDER EXAM – test for rotator cuff deficiency / tears
- SPURLING TEST
- ROMBERG TEST – test for latent hemiparesis
- DIADOCHOKINESIS TEST - coordination
Imaging Modalities

- **Xray** – alignment / stability / bone
- **CT**
 - Fine cut reconstructions
 - Myelogram
 - Discogram
- **MRI**
 - Gadolinium
- **Nuclear Medicine**
 - Bone scan / gallium scan / SPECT / PET

Alignment

- **CT (fine cut reconstruction)**
 - Difficult to assess anatomy
 - Bone quality and size of lesions
 - Surgical planning / counseling

Winking Owl Sign
CT Myelography

- Improves accuracy of stenosis and herniated disc lesions
 - as sensitive and specific as MRI
 - Axial and reconstructed images improve visualization of lateral recess and foramen
- Best for complex deformity
- Used when instrumentation in place

MRI

- New MRI sequences on 3T MRI
 - T1rho – examines the proteoglycan concentration within the disc
- In association with spectroscopy – localize lactate / metabolic changes within disc
- Improved accuracy of prediction of locus of back pain

DISC HERNIATION
MRI + GAD: Discitis

Type I progresses – inflammatory; associated with back pain
Correlation with positive discogram

DISCOGRAM
- ANESTHETIC DISCOGRAM
- POSITIVE CONCORDANCE
- PROVOCATIVE

Acquired Pain of Spinal Origin
- Neck Pain
- Degenerative disc disease / stenosis
- Herniated disc
- Spondylolysis / Spondylolisthesis
- Adult Scoliosis
Degenerative Disc Disease

- Axial back pain / pain with forward flexion / sitting
- Difficult to determine painful level if multiple levels involved

MANAGEMENT

- XRAY – r/o instability / alignment
- MRI
 - r/o infection / tumor
 - Identify other degenerative discs
 - Modic changes – correlation to discogram
 - HIZ
- Anesthetic Discogram
 - Structural changes
 - Concordance following injection of saline
 - Improvement of pain following injection of local anesthetia

Disc Herniation

- 11% of adolescent athletes experience symptomatic disc herniations
- Common at L4-5 and L5-S1
- Far lateral disc herniations
DISC HERNIATION

- Axial loading plus forward flexion
- Radicular leg pain – level identified through history and physical exam
 - Pain is in a dermatomal region
 - Dropped reflex
 - With or without weakness
- With or without back pain

MANAGEMENT

- IMAGING
 - XRAY
 - MRI
 - RECURRENT DISC GET MRI WITH GAD TO DIFFERENTIATE BETWEEN DISC AND SCAR TISSUE
 - NON-OPERATIVE MANAGEMENT
 - PT
 - Trans – foraminal epidural steroid injections
 - OPERATIVE MANAGEMENT – for leg pain
 - Failure of conservative management
 - Progressive pain
 - Progressive neurological deficit

NEUROGENIC CLAUDICATION

- Back pain with symptoms of neurogenic claudication
 - Walking intolerance / standing intolerance
 - Relief with sitting or forward flexion
 - Walks better up hill or with shopping cart or bicycle riding
 - Flexion opens the foramen
MANAGEMENT

- Imaging: MRI
- Non-operative management
 - Core strengthening PT / flexion exercises
 - Trans-foraminal epidural steroid injections based on MRI
- MIS Techniques for decompression
- Decompression and fusion if back pain is significant or instability is present (degenerative spondylolisthesis)

ADULT SCOLIOSIS

- INCIDENCE – UPTO 65%
- EVALUATION
 - PAIN
 - PROGRESSION OF CURVE
 - PROGRESSIVE NEUROLOGIC DEFICIT
 - PULMONARY COMPROMISE
 - CO-MORBIDITIES

MANAGEMENT

- IMAGING:
 - standing AP/LAT xray
 - CT myeolgram or MRI
- Non-operative Therapy
 - PT: stretching / core strengthening / cardiac conditioning
- Operative Options:
 - MIS
 - MAS
Spondylolysis

- Most common etiology for low back pain in athlete (47% of pain in adolescent athlete attributable to spondylolisthesis)
- Very common in gymnasts, weight lifters, football
- Defect in the pars interarticularis

Bony Anatomy
Classification

- Two main categories
 - Primary developmental deficiency resulting in dysplasia
 - Growth alteration in posterior and anterior columns
 - Posterior elements: lamina, pars interarticularis, facets
 - Anterior column: disc, vertebral body of L5 and sacral shelf
 - High dysplastic: adolescent - domed S1 and wedged L5, lumbosacral kyphosis; may or may have pars elongation – at increased risk for cauda equina syndrome
 - Low dysplastic: young adult – translation w/o angulation; low grade may develop into high grade through adaptive changes
 - Acquired: traumatic, iatrogenic, pathological, or degenerative

Pathogenesis – high dysplastic

 - Weakness in the vertebral growth plate as an important mechanism in spondylolisthesis
 - Slippage occurred between the osseous and cartilaginous endplates during the apophyseal stage of lumbar skeletal growth
 - Sacral equivalence of Blount’s disease

Pathogenesis – low dysplastic

 - From biomechanic studies alternate loading is the most likely etiology of the development of spondylolisthesis
 - People involved in repetitive alternate loading activities such as gymnastics, weight lifting, and football have higher incidences of spondylolysis.
- High incidence in athletes are found in:
 - Throwing sports 27%
 - Diving 43%
 - Dance 43%
 - Wrestling 30%
 - Gymnastics 17%
 - Rowing 17%
Incidence

- 500 unselected first-grade children from 1955 through 1957
- The incidence of spondylolysis at the age of six years was 4.4 per cent and increased to 6 per cent in adulthood
- The degree of spondylolisthesis was as much as 28 per cent
- The spondylolytic defect is the result of a defect in the cartilaginous anlage of a vertebra
- Hereditary pre-disposition to the defect and a strong association with spina bifida occulta

Natural History

- Subjects with unilateral defects never experienced slippage over the course of the study
- Progression of spondylolisthesis slowed with each decade
- There was no association of slip progression and low back pain
- There was no statistically significant difference between the study population SF-36 scores and those of the general population the same age

Risk Factors for Slipping

- Female gender
- Pre-pubescence
- Increased slip angle (>55)
- Sagital rotation
- Trapezoidal L5
- Vertical sacrum
- Pelvic Incidence/Sacral Slope:
 - High SS >40 with high PI increases shear vs. low PI and low SS predisposes to increased flex/ext stress and pars fracture: "nutcracker"

Clinic Exam Findings

- Hyperlordosis
- Retroverted pelvis
 - (heart shaped buttock)
- Hamstring tightness
- Nerve tension signs
- Motor and sensory deficits
- Step-off deformity
- Short stepped gait
Radiographic Evaluation

Spondylolisthesis / Scoliosis

MRI

Management

- Acute vs. chronic
- Dependent on back pain
- Close follow up
- Temporary withdrawal from sports
- TLSO
- Physical therapy
- Return to sports

- Observe – stress reaction identified by increased uptake on SPECT, limit sports activities
- Brace: TLSO
 - Spondylolysis: pars fracture undisplaced
 - Spondylolisthesis: low dysplastic
- Surgical Intervention
 - Repair of defect: Buck’s screw
 - Arthrodesis: levels?
 - Decompression
 - Reduction vs. in situ fusion
CERVICAL NECK PAIN

- DEGENERATIVE DISC
- SPODYLOLISTHESIS
- KYPHOSIS
- NEUROGENIC NECK PAIN

CERVICAL PAIN

- NECK PAIN MAY BE CAUSED FROM NEUROGENIC PAIN 2ND TO FORAMINAL STENOSIS
 - C3/4, C4/5 masquerades as neck and shoulder pain
- MRI
 - Depicts foraminal stenosis
- MANAGEMENT
 - Transforaminal epidural steroid injection
 - MIS decompression

CERVICAL FORAMINAL STENOSIS
Summary

- Pain of spinal origin is common
 - Natural Hx
 - Imaging
 - Diagnosis
 - Non-op management

- Back pain and leg pain improve with non-operative management

- Operative management:
 - Progressive neural deficit
 - Progressive deformity
 - Pain unresponsive to non-operative management

Thank you