Hemorrhagic Stroke in Asian Patients

J. Claude Hemphill III, MD, MAS

Associate Professor of Clinical Neurology and Neurological Surgery
University of California, San Francisco
Director, Neurocritical Care
San Francisco General Hospital

Selected slides courtesy of:
Dr. David Mendelow, PI-STICH
Dr. Stephan Mayer, PI-rVIIA phase IIa ICH study

Disclosures
Research Support: NIH/NINDS, Novo Nordisk
Consulting: Astra Zeneca, Novo Nordisk, Innercool Therapies, Medivance
Stock options: Cardium Therapeutics (Innercool Therapies)

Hemorrhagic Stroke - High Burden of Disease

- High morbidity and mortality
 - 35-52% 30-day mortality
 - 20% of ICH patients independent at 6 mo
- 34% of years of potential life lost to stroke
- Lifetime cost per case ~ $124,000
- Total lifetime cost for annual US cases >$4B

Frequency of Stroke by Etiologic Subtype

Ischemic

- Thrombotic: 53%
- Embolic: 31%

Hemorrhagic

- 16%

ICH

- Intracerebral: 10%
- Subarachnoid: 6%

SAH

- 5-10% of all strokes
- Incidence: 5-16 per 100,000/ year
- Aggregate costs of $5 billion/ year
- One-third of potential years of life lost before age 65 due to stroke

Taylor et al. Stroke 26:1459-1466, 1996
ICH - Etiologies

- **Primary**
 - Hypertension (~70%)
 - Vascular malformation
 - AVM
 - Aneurysm
 - Amyloid angioathy
 - Coagulopathy
 - Sympathomimetic drugs
 - Vasculitis
 - Moya-Moya

- **Secondary**
 - Into Infarct
 - Arterial
 - Venous
 - Into Tumor

ICH - Management

- Evidenced-based vs. “In My Experience”
- No approved treatment (medical or surgical) proven beneficial in improving outcome (mortality or function) in randomized, controlled trial
- Primary and Secondary Brain Injury

ICH – Outcome Predictors

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supratentorial only (n=122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>0.69 (0.50-0.82)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (≥ 65 y)</td>
<td>9.55 (2.40-38.07)</td>
<td>0.001</td>
</tr>
<tr>
<td>ICH Volume</td>
<td>1.40 (1.06-1.84)</td>
<td>0.017</td>
</tr>
<tr>
<td>Infratentorial only (n=30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>0.64 (0.46-0.88)</td>
<td>0.007</td>
</tr>
<tr>
<td>IVH</td>
<td>10.52 (6.84-131.19)</td>
<td>0.007</td>
</tr>
<tr>
<td>All ICH Patients (n=152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>0.69 (0.50-0.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (≥ 65 y)</td>
<td>9.84 (2.58-37.47)</td>
<td>0.001</td>
</tr>
<tr>
<td>Infratentorial Origin</td>
<td>4.24 (1.19-15.68)</td>
<td>0.030</td>
</tr>
<tr>
<td>IVH</td>
<td>2.97 (0.99-8.92)</td>
<td>0.052</td>
</tr>
<tr>
<td>ICH Volume</td>
<td>1.31 (1.00-1.71)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Odds ratio is expressed per point on the GCS score and per 10 cc of ICH Volume

Kothari et al. Stroke 27:1304-1305, 1996

ICH Volume

\[
\frac{A \times B \times C}{2}
\]

Select CT slice with largest ICH
A = longest axis (cm)
B = longest axis perpendicular to A (cm)
C = # of slices x slice thickness (cm)

Estimated volume of spheroid
Correlates well w/ planimetric CT analysis

Hemphill, Stroke 2001
Issues in Acute ICH Treatment

- Surgical hematoma evacuation
- Preventing hematoma enlargement
 - Hemostatic agents (recombinant factor VIIa)
- Coagulopathy-related ICH
- Blood Pressure Management

Surgical Trial for ICH (STICH)

- Completed in 2003
- Largest study of surgery in ICH (>1000 pts)
- Does a policy of “Early Surgery” improve outcome in patients with spontaneous supratentorial ICH compared with a policy of “Initial Conservative Treatment”?
 - Randomisation within 72 hours of ictus
 - Surgery within 24 hours of randomisation
 - Selection based on “uncertainty principle”

STICH Randomisation by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>No. Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
</tr>
<tr>
<td>Belgium</td>
<td>1</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>2</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
</tr>
<tr>
<td>Hungary</td>
<td>1</td>
</tr>
<tr>
<td>Ireland</td>
<td>1</td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>1</td>
</tr>
<tr>
<td>Latvia</td>
<td>1</td>
</tr>
<tr>
<td>Lithuania</td>
<td>1</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2</td>
</tr>
<tr>
<td>Norway</td>
<td>1</td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
</tr>
<tr>
<td>Singapore</td>
<td>1</td>
</tr>
<tr>
<td>South Africa</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>1</td>
</tr>
<tr>
<td>USA</td>
<td>1</td>
</tr>
</tbody>
</table>

STICH - Results

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Early Surgery</th>
<th>Initial Conservative tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alive</td>
<td>354 (64%)</td>
<td>316 (65%)</td>
</tr>
<tr>
<td>Dead</td>
<td>171 (36%)</td>
<td>189 (37%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary Outcome</th>
<th>Early Surgery</th>
<th>Initial Conservative tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable</td>
<td>112 (36%)</td>
<td>118 (24%)</td>
</tr>
<tr>
<td>Unfavourable</td>
<td>346 (74%)</td>
<td>381 (76%)</td>
</tr>
</tbody>
</table>

P=0.71 P=0.41

- No Difference
- 26% of patients randomised to Initial Conservative Treatment later had surgery
- Early surgery is not harmful
- There is no evidence favoring early surgery in supratentorial ICH

Mendelow Lancet, 2005
Hematoma Expansion in ICH

- Previously suggested as rare, suggestive of underlying AVM, coagulopathy

- Studies of early serial CT show as common
 - Fujii (1994) - 60 of 419 pts (14%)
 - Kazui (1996) – 20% w/ enlargement by 13 cc or 40%
 - Brott (1997) – 38% of 103 pts in first 20 hours

Kazui et al. Stroke 27:1783, 1996
Brott et al. Stroke 28:1, 1997

Conclusions

- **rFVIIa for acute ICH**
 - Significantly reduces hematoma growth in a dose-dependent fashion
 - Reduces mortality and significantly improves global functional outcome (mRS and BI) at 90 days
 - Is associated with a small increase in the risk of acute thromboembolic events (2% v. 7%)
FAST Trial

- Phase III Trial of rFVIIa in acute ICH
- FAST trial under way globally since May 2005; completed in November 2006
 - >120 global sites; ~70 US sites; > 10% of patients enrolled in China
 - 841 patients randomized; 821 patients dosed
- Largest ICH medical trial ever conducted
- Protocol similar to phase IIb trial
- rFVIIa 80 µg/kg vs 20 µg/kg vs placebo

FAST: Primary Results

Hematoma Growth at 24 hrs

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>20 µg/kg</th>
<th>80 µg/kg</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % change</td>
<td>26%</td>
<td>18%</td>
<td>11%</td>
<td>0.0004</td>
</tr>
<tr>
<td>Absolute difference</td>
<td>7.8 ± 18.7</td>
<td>4.7 ± 14.8</td>
<td>3.8 ± 15.3</td>
<td>0.009 (20 µg/kg vs placebo)</td>
</tr>
</tbody>
</table>

- Dramatic effect on reducing hematoma expansion
 - similar to phase IIb study

FAST: Primary Results

<table>
<thead>
<tr>
<th>Clinical Outcome at 90 days</th>
<th>Placebo</th>
<th>20 µg/kg</th>
<th>80 µg/kg</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Rankin Score ≥ 6</td>
<td>24%</td>
<td>26%</td>
<td>29%</td>
<td>NS</td>
</tr>
<tr>
<td>Mortality</td>
<td>19%</td>
<td>18%</td>
<td>21%</td>
<td>NS</td>
</tr>
</tbody>
</table>

- Clinical outcome not affected by treatment
 - Different than phase IIb study

Warfarin-related hemorrhage

- 64 yo woman with atrial fibrillation, hypertension
 - On warfarin, INR 4.5
- FFP ordered stat, thawed and infusion initiated, INR rechecked periodically

Mayer SA. Presented at the American Academy of Neurology 59th Annual Meeting; April 28-May 5, 2007; Boston, Massachusetts.
Reversal of Anticoagulation

- Principle – any ICH in patient on warfarin (with INR > 1.4) should be considered “life-threatening”
- Goal – normal INR ASAP
- Guidelines from US, UK, Australasia recommend
 - Prothrombin complex concentrate (PCC)
 - Vitamin K (1 mg IV or 10 mg SQ)
- Less hematoma growth with PCC, with no difference with FFP if INR corrected w/in 2 hours (Huttner, Stroke 2006)
- However, PCC underutilized – lack of availability
- Reports of recombinant factor VIIa usage

BP in ICH - Expert Consensus

- Guidelines for the Management of Spontaneous Intracerebral Hemorrhage
 – AHA Stroke Council, 1999
- Blood Pressure
 - Maintain MAP < 130 mm Hg (~180/110), in patients with a h/o hypertension
 - CPP > 70 mmHg (if ICP monitoring done)
 - MAP < 100 mmHg post-op (if surgical evacuation)
 - Keep SBP > 90 mmHg

BP Lowering Trials in ICH

- INTERACT – Australia/NZ, China, probably US
 - Randomized open-label study
 - Entry criteria
 - 2 SBP measurements (≥150 to ≤300 mm Hg)
 - BP-lowering regimen < 6 h of onset
 - BP Rx goals – SBP ≤ 180 v. SBP ≤ 140
 - Primary outcome
 - Mortality and mRS (> 2) at 3m
 - 2nd outcome
 - Neurological deterioration ≤ 72h
 - Hematoma expansion at 24h and 72h
- ATACH – NIH
 - PI – Adnan Qureshi
 - “Dose-escalation” study of feasibility of achieving 3 successive BP goals for 24 hours after acute ICH
 - Safety evaluation by decrease in GCS of 2 points or NIHSS of 4 points
 - Total – 60 patients

Aneurysmal Subarachnoid Hemorrhage

- Risk factors for aneurysms/SAH
 - Female
 - Smoking
 - Hypertension
 - EtOH consumption?
Aneurysmal Subarachnoid Hemorrhage

Neurologic Complications after SAH

- Hydrocephalus
- Rebleeding
- Vasospasm
- Hyponatremia

Days

Aneurysm Treatment

- “Preventive medicine”
- Allows aggressive treatment for vasospasm

Options
- “Clipping versus coiling”
- ISAT – International Subarachnoid Aneurysm Trial
 - Lancet, 2002
 - 2143 patients
 - One-year dead/dependent
 - Clipping 30.6%
 - Coiling 23.7% (p=0.0019)

Vasospasm

36 yo woman with L carotid-ophthalmic artery aneurysm, SAH, & vasospasm

SAH D8: Mild fluctuating right hemiparesis, no aphasia, on maximal HTN therapy
Vasospasm

- Classical Approaches
 - Nimodipine prevents sequelae but not angiographic vasospasm
 - “triple-H” therapy (hypertension, hypervolemia, hemodilution)

- New Approaches
 - Angioplasty
 - Statins decrease inflammatory response? Clinical trials
 - Endothelin receptor antagonists – clinical trials

Angioplasty for Vasospasm

Hemorrhagic Stroke

- Is hemorrhagic stroke different across different race/ethnicities?
 - Incidence?
 - Etiology?
 - Outcome?
 - ICH or SAH or both?

Annual Incidence of First ICH (by Age, Sex, Race)

Greater Cincinnati/Northern Kentucky Stroke Study: 1993-1994

Usually presented as evidence of health-care disparities and generally attributed to access to health care and differential treatment of hypertension

Cerebrovascular Disease in Asia

- China
 - Stroke is more common cause of death than CAD
 - 1990 (death rate / 100,000 – males only)
 - MB Stroke
 - China 22.7 126.4
 - US 106.8 46.8
 - Hemorrhagic stroke (principally ICH) accounts for ~30% of strokes
- Japan
 - Higher incidence of aneurysmal SAH
- India
 - Single center registry, ~50% of hospital admitted stroke patients had ICH (Banerjee, J Indian Med Assoc. 2005)

Is this an “Asian Effect?”

 - 128,934 persons – self-classified ethnicity
 - 60% white, 27% black
 - 5% Chinese, 1% Japanese, 0.5% Filipino, 0.5% South Asian, 0.7% other Asian, 2.2% Mixed/Other
 - 431 with ICH (69%) or SAH (31%)
- Compared to whites
 - Increased relative risk (1.6) of hemorrhagic stroke in Asians
 - Due to increased SAH risk in Japanese (RR=3.9) and ICH risk in Filipinos (RR=2.6)
 - Adjusted for age, smoking, BP

Asians in America?

<table>
<thead>
<tr>
<th>Table II</th>
<th>Age-Adjusted Annual Death Rates (1/100,000) for Chinese and Whites in New York City, 1988–1995, and Urban Chinese in China, 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chinese</td>
</tr>
<tr>
<td></td>
<td>NYC</td>
</tr>
<tr>
<td>Male</td>
<td>All causes</td>
</tr>
<tr>
<td></td>
<td>CVD (ICD 390–459)</td>
</tr>
<tr>
<td></td>
<td>Stroke (ICD 430–438)</td>
</tr>
<tr>
<td></td>
<td>CHD (ICD 410-444)</td>
</tr>
<tr>
<td></td>
<td>HT (ICD 401–405)</td>
</tr>
<tr>
<td>Female</td>
<td>All causes</td>
</tr>
<tr>
<td></td>
<td>CVD (ICD 390–459)</td>
</tr>
<tr>
<td></td>
<td>Stroke (ICD 430–438)</td>
</tr>
<tr>
<td></td>
<td>CHD (ICD 410-444)</td>
</tr>
<tr>
<td></td>
<td>HT (ICD 401–405)</td>
</tr>
</tbody>
</table>

Asians in America?

<table>
<thead>
<tr>
<th>Table IV</th>
<th>Age-Adjusted Mortality Rates for Stroke Among New York City Chinese and Whites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NYW Whites</td>
</tr>
<tr>
<td>Male</td>
<td>Hemorrhagic stroke</td>
</tr>
<tr>
<td></td>
<td>Ischemic stroke</td>
</tr>
<tr>
<td>Female</td>
<td>Hemorrhagic stroke</td>
</tr>
<tr>
<td></td>
<td>Ischemic stroke</td>
</tr>
</tbody>
</table>

Defining Race/Ethnicity

Definitions per US Census
Race – White, Black, American Indian, API
Ethnicity – Hispanic or non-Hispanic

<table>
<thead>
<tr>
<th>TABLE 1.</th>
<th>Age standardized death rates per 100,000 population from stroke subtypes and risk factors and 95% confidence intervals comparing rates in racial/ethnic populations with those in White populations among adults aged 25 years or older, United States, 1995-1998</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase in rate</td>
</tr>
<tr>
<td>Stroke subtype</td>
<td>Risk factor</td>
</tr>
<tr>
<td></td>
<td>(rate/100,000)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Risk ratio increases the rate for a non-Hispanic minority population with the rate for the White population.

Does this help with understanding
- Minority access to health care in US?
- Genetic predisposition to disease?
- Neither?
- Does it Matter?

No Increased Risk in Hispanics?

- Stroke subtype comparison between RMH (Buenos Aires, Argentina) and BIMC (Boston)

<table>
<thead>
<tr>
<th>TABLE 2. Stroke Subtypes in the RMH and BIMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke subtype</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Ischemic stroke</td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
</tr>
<tr>
<td>Extracerebral</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
</tr>
</tbody>
</table>

* Hypertension present in 75% (RMH) and 65% (BIMC)

Saposnik, Stroke 2000

Genetic Predisposition to ICH

- Factor XIII A-subunit gene (FXIII Val34Leu) is risk factor for primary ICH
- FXIII Val34Leu present in
 - ~50% of Westerners
 - 2.5% of Asians
 - Case-control (58/48) study
 - No mutations found -> thus, no association w/ ICH
Genetics and Aneurysms

- Multiple gene loci implicated
 - Chromosome 19q13.3 as susceptibility locus
- High incidence in Japanese
 - ~2-3% with cerebral aneurysms
- Dutch MRI screening study (NEJM 2007)
 - 1.8% with incidental cerebral aneurysms

Moyamoya

- Obliterative arteropathy with b/t distal intracranial ICA occlusions or high-grade stenoses
- Usually diagnosed angiographically ("vague or hazy puff of smoke")
- More common in Asians
- Non-inflammatory with intimal thickening and smooth muscle proliferation

What About Risk Factors?

Prevalence and Magnitude of Classical Risk Factors for Stroke in a Cohort of 5092 Chinese Steelworkers Over 13.5 Years of Follow-up

- 31% prevalence of hypertension (BP > 140/90)
- Risk ratio no different for stroke among Chinese than Framingham & Honolulu for cholesterol, smoking, obesity
- Attributable risk for hypertension much higher than in whites
 - Ischemic stroke 31% v. 25%
 - Hemorrhagic stroke 42% v. 34%
- Conclusion – hypertension is a greater risk factor for stroke in Asians than whites
 - Interaction between genetics and risk factor?

Warfarin-related ICH

- Kaiser NorCal cohort
- 173 ICH events over 3.3 years
- Hazard ratio for ICH (c/w whites)
 - Asians 4.06 (2.47-6.65)
 - Hispanics 2.06 (1.31-3.24)
 - Blacks 2.04 (1.25-3.35)
- INR > 3.5 at time of ICH in 32% of Asians (c/w 11% of whites)
Warfarin for Atrial Fibrillation

- Pooled analysis of 5 primary stroke trials
 - Stroke rate (annual)
 - Non-warfarin: 4.5%
 - Warfarin: 1.4%
 - 68% risk reduction with warfarin
 - Absolute increase in major bleeding of 0.3%/year
- Shen et al. – Kaiser study
 - Annual ICH rate for Asians
 - Not on warfarin: 0.12%
 - On warfarin: 1.75%
- Bottom line – potential risk of ICH in Asians more than offset by benefit of warfarin
- Attention to level of anticoagulation is extremely important

Genetics of Warfarin Dosing

- Genotypes determine warfarin dose needs
 - Cytochrome P450 isoform CYP2CP
 - Vitamin K epoxide reductase subunit 1 VKORC1
- Couma-Gen study (Circulation 2007)
 - Randomized trial of dosing based on genotype
 - 206 subjects (95% white)
 - No difference in “within range” INRs
 - Proof of principle

Study Challenges

- Case ascertainment and quality of databases in large countries with rural populations
- Bias related to hospitalized patients
- Definitions of race/ethnicity
 - Purpose driven v. science driven
- Changing risk factors with immigration
 - Acculturation
 - Changes in diet
- Homogeneity of cohorts (White, Chinese, etc.)

UCSF ICH Cohort

<table>
<thead>
<tr>
<th>UCSF ICH Cohort (n=243)</th>
<th>San Francisco Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Indian or Alaskan Native</td>
<td>0.80%</td>
</tr>
<tr>
<td>Asian</td>
<td>44%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>17.70%</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>3.70%</td>
</tr>
<tr>
<td>White</td>
<td>33.70%</td>
</tr>
<tr>
<td>Hispanic (ethnicity)</td>
<td>5.80%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>0.4%</td>
</tr>
<tr>
<td>Asian</td>
<td>30.8%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>7.8%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander</td>
<td>0.5%</td>
</tr>
<tr>
<td>White persons</td>
<td>49.7%</td>
</tr>
<tr>
<td>Persons reporting some other race</td>
<td>6.5%</td>
</tr>
<tr>
<td>Persons reporting two or more races</td>
<td>4.3%</td>
</tr>
<tr>
<td>Persons of Hispanic or Latino origin</td>
<td>14.1%</td>
</tr>
</tbody>
</table>
Summary: Hemorrhagic Stroke in Asians

- Stroke is a major cardiovascular issue in Asian patients
 - Hemorrhagic stroke accounts for a larger proportion of strokes
- Primary genetic component is possible but unclear at present
- May have increased susceptibility to modifiable risk factors
 - Hypertension
 - Anticoagulation
- Reasonable approach
 - Avoid fatalism – treat risk factors aggressively!!
 - Well-designed studies that account for
 - Genetics v. self-description
 - Include diverse cohort