Genetic Testing for Disease Predisposition

Mary S. Beattie, MD, MAS
Associate Professor of Medicine
UCSF Division of General Internal Medicine and UCSF Women's Health

The focus of this lecture is on genetic testing instead of an in-depth discussion of disease

Definitions

- “Genetic Testing”
 - Many types (full sequencing, single site, common mutations, chromosome analysis, etc.)
 - Many tissues (tumors, blood, buccal mucosa)
 - Not just a test, a process
 - Specialty labs

- “Disease Predisposition”
 - Risk is a complex issue, not “all or nothing”
 - Which diseases?
 - What to do with results?

“Explosion of genetic info”

www.genetests.org
1131 clinical genetic tests
~300 - 400 more/yr

CDC EGAPP project
“Explosion of genetic information is a public health issue”

www.genetests.org
1131 clinical genetic tests
~300 - 400 more/yr

CDC EGAPP project
“Explosion of genetic information is a public health issue”
1. Ivana Test: 24 y/o, mother just diagnosed; aunt died of breast cancer. “I just want the test”

2. Cy Fibrosis: 28 y/o with male infertility. His genetic testing for cystic fibrosis is prompting his wife to consider testing.

3. Ima Clotter: Healthy 30 y/o whose sister was found to carry “blood clotting genes” after several miscarriages. Not sure she wants to test, “How would it change things for me?”

Ivana Test’s Family History

- Mother diagnosed last month with breast cancer
- Aunt with breast cancer was paternal, died at 45
- Eastern European
- Not close with paternal side
 - Only one cousin
 - Paternal grandmother died young

BRCA tests & insurance: What’s false?

- Health insurance won’t cover BRCA testing.
- Health insurance won’t cover appropriate screening and prevention in BRCA carriers.
- Health insurance plans can increase premiums or drop coverage based on BRCA results.
- There are no legal protections for life insurance.
- None of the above
- All of the above
- D only
Three Generation Pedigree

- **Diabetes**: d.82
- **MI**: d.71
- **Breast ca 40, d45**: 85

Three Generation Pedigree, Next Visit

- **Diabetes**: d.82
- **Ovarian**: d.40
- **Prostate ca 55, Now 66**: Breast ca 65
- **Breast 33**: 47

Misconceptions About Family History

- "Cancer on the father's side of the family doesn't count."
- "Ovarian cancer in the family history is not a factor in breast cancer risk."
- "The most important thing in the family history is the number of women with breast cancer."
- **Half of all women with hereditary risk inherited it from their father.**
- **Ovarian cancer is an important indicator of hereditary risk, although it is not always present.**
- **Age of onset of breast cancer is more important than the number of women with the disease.**
Genetic Counselor’s Family History

- Extensive pedigree, including cousins
- Verify cause of death, age of diagnosis and death
- Ovarian and “female” cancers often not discussed
- Ask about Jewish ancestry
- Next step is to test individual already affected with cancer
 - “Genetics is a family business”

Cells have Two Copies of BRCA1 and BRCA2

Autosomal Dominant Inheritance

Father with mutation on one chromosome

Each child has a 50% chance of inheriting an autosomal dominant disorder
BRCA 1 / 2 Associated Cancers:

Lifetime Risk

<table>
<thead>
<tr>
<th></th>
<th>General Population</th>
<th>BRCA Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer</td>
<td>12%</td>
<td>60-85%</td>
</tr>
<tr>
<td>Second Primary Breast</td>
<td><1%</td>
<td>40-50%</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td>20-40%</td>
<td></td>
</tr>
<tr>
<td>BRCA2</td>
<td>10-20%</td>
<td></td>
</tr>
</tbody>
</table>

Founder Mutations

- In the general population
 - ~ 1/400 carry BRCA mutations
- Hundreds of different mutations identified
- In the Ashkenazi Jewish population
 - 1/40 carry one of 3 specific mutations
 - 2 in BRCA 1 and 1 in BRCA 2, explain 90%
- Other “founder” populations
 - French Canadians, Icelanders, Polish

Testing Options

- Comprehensive Analysis
- Single Site Analysis
- Multisite 3 Analysis (BRACANALYSIS ONLY)

BRCA1
- 1056delAG
- 592insC

BRCA2
- 615delT
Three Possible BRCA results

- **Positive**: Known deleterious mutation found
- **Negative**:
 - **Uninformative negative**: No mutation found, but family history is not explained
 - **True negative**: Known mutation in family and patient doesn’t have it
- **Variant of Undetermined Significance**: Change in DNA, but unsure whether it’s deleterious or benign

Are some “uninformative negatives” really positive?

King, JAMA 06

- 300 very high risk families with “uninformative negative” results AND 4 family members with breast or ovarian cancer
- 12% had duplications (extra chapter), deletions (missing chapter), or rearrangements (misplaced chapter) in BRCA1 or BRCA2, “false negatives”
- Unclear how common these duplications or rearrangements are in the larger population receiving BRCA testing

Ivana Test, Conclusion

- Ivana’s father tested positive for a mutation common in the Jewish population
- Men can carry mutations in BRCA1/2
- Start with an affected individual if possible
- Ivana then tested using the Jewish panel and was negative
- A negative result is only a “true negative” when there is a positive result in the family
Cy Fibrosis’s History

- Infertility work-up showed azoospermia.
- Congenital absence of vas deferens (1-2% of infertile men have this).
- Standard CF testing showed patient is a carrier of Delta F508.
- He wants to use ICSI (intracytoplasmic sperm injection).

Cystic Fibrosis Genetics

- CF is caused by mutations in a single large gene on chromosome 7 (codes CFTR protein).
- CF is typically autosomal recessive.
- 250 kilobases, 1480 amino acid protein.
- Wide phenotypic variation of disease.
- 1998 consensus statement for screening:
 - Family history of CF or partner’s family hx of CF.
 - Whites of European or AJ descent planning pregnancy or seeking prenatal care.

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Incidence</th>
<th>Carrier Frequency</th>
<th>F508</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1/3300</td>
<td>1/25</td>
<td>70%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1/8500</td>
<td>1/46</td>
<td>46%</td>
</tr>
<tr>
<td>AJ</td>
<td>1/29</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>Black</td>
<td>1/15,300</td>
<td>1/65</td>
<td>48%</td>
</tr>
<tr>
<td>Native American</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuni</td>
<td>1/3970</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Pueblo</td>
<td>1/1500</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Asian</td>
<td>1/32,100</td>
<td>1/90</td>
<td>30%</td>
</tr>
</tbody>
</table>
Cy’s wife has a “variant”

- “Variants of Undetermined Significance” (VUS) occur in about 5% of whites receiving full sequence testing, 20-40% of non-whites
- VUS are becoming more common
- Full sequence testing becoming more common technology
- Testing is becoming more accepted and available in non-white populations

What are the chances the fetus will have cystic fibrosis?

- One in 4
- One in 2
- One in 8
- Unknown

Ima Clotter’s Family History

- After 3 miscarriages, Ima’s older sister was found to have a “double defect”
- Ima is G1P1, on birth control pills, and healthy.
- A third sister is currently pregnant.
- Feels it’s “opened Pandora’s Box” and wonders “How will it change my care if I test?”
What is a “double defect?”

Two inherited thrombophilias

Factor V Leiden, nucleotide 1691 transition from guanine to adenine results in Arg506Gln protein
Prothrombin 20210, guanine to adenine, untranslated
MTHFR variant (C677T)
Protein C deficiency
Protein S deficiency
Antithrombin deficiency

Risks of first venous thrombosis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative Risk</th>
<th>Annual Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.0</td>
<td>0.008</td>
</tr>
<tr>
<td>Hyperhomocysteinemia</td>
<td>2.5</td>
<td>0.02</td>
</tr>
<tr>
<td>(MTHFR C677T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 20210</td>
<td>2.8</td>
<td>0.02</td>
</tr>
<tr>
<td>OCP's</td>
<td>4.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Factor V Leiden hetero</td>
<td>7.0</td>
<td>0.06</td>
</tr>
<tr>
<td>Plus OCPs</td>
<td>35</td>
<td>0.29</td>
</tr>
<tr>
<td>Factor V Leiden homo</td>
<td>80</td>
<td>0.5-1.0</td>
</tr>
</tbody>
</table>

Thromboembolism in Pregnant Women with Inherited Thrombophilias

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Probability per pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.03%</td>
</tr>
<tr>
<td>Factor V Leiden</td>
<td>0.25%</td>
</tr>
<tr>
<td>PT 20210</td>
<td>0.5%</td>
</tr>
<tr>
<td>Factor V and PT 20210</td>
<td>4.6%</td>
</tr>
<tr>
<td>Antithrombin deficiency</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Gerhardt, NEJM 2000
Would testing change management?

- Indefinite anticoagulation recommended if
 - 2 or more spontaneous thromboses
 - 1 spontaneous thrombosis and
 - Antithrombin deficiency or antiphospholipid Ab
 - Life threatening or unusual site
 - "Double" or more defects
- Anticoagulate during pregnancy if
 - Antithrombin deficiency or "double defect"
 - Consider if personal or FH of thrombosis

Ima Clotter, Conclusion

- Ima is heterozygous for Factor V Leiden
 - She stops OCPs
- Ima’s pregnant sister carries a “double defect”
 - She is discussing anticoagulation with her OB
- Both defects are autosomal dominant
- Testing was fairly straightforward, as there were 2 genes with known mutations.

Which of the following principles apply to genetic testing?

- If possible, start with the affected individual
- Genotype does not always equal phenotype
- Discuss pros and cons of testing
- Knowledge of ethnic background is helpful
- Plan for the “next step” and consider all possible test outcomes
- All of the above
Why consider testing for predisposition genes?

- To identify patients at very high risk of disease
- To identify patients who are not at increased risk, despite family history
- To allow high risk patients to consider increased screening, chemoprevention, or preventive procedures
- To assist with prenatal counseling
- To possibly allow patient to enter screening/prevention trials
- To provide important health info to extended family

A Multi-Step Process: Pretest Genetic Counseling

 Assess
- Personal and family medical history
- Risk perception and motivation for testing

 Educate
- Basic genetics and inheritance
- Genotype/phenotype disparities and risk
- Genetic counselor resources: www.nsgc.org

 Discuss
- Risks, benefits, and limitations of testing
- Test procedure and alternatives to testing
- Management options

A Multi-Step Process: Post-test Genetic Counseling

 Review
- Educational concepts and family history
- Risk and prior probabilities

 Disclose
- Test results
- Interpretation of results

 Discuss
- Plans for prevention and treatment
- Sharing results with family members
- Potentially testing other family members
Family History of Hereditary Breast and Ovarian Cancer

Hereditary

- Ov, 32
- Br, 42
- Br, 45
- Two or more women with breast cancer before age 50 or ovarian cancer at any age
- One woman with breast cancer before age 50 or ovarian cancer at any age, plus Ashkenazi ancestry

Sporadic

- Br, 63
- Br, 71
- None of the breast cancer is diagnosed before age 60
- No ovarian cancer
- No clear pattern on one side of family or other

Benefits, Risks, and Limitations of BRCA Testing

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Risks and Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identifies high-risk individuals</td>
<td>- Does not detect all mutations (rearrangements, other genes)</td>
</tr>
<tr>
<td>- Identifies noncarriers (low-risk) in families with a known mutation</td>
<td>- Continued risk of sporadic cancer</td>
</tr>
<tr>
<td>- Allows early detection and prevention strategies</td>
<td>- Efficacy of some interventions unproven</td>
</tr>
<tr>
<td>- May relieve anxiety</td>
<td>- May result in psychosocial or economic harm</td>
</tr>
</tbody>
</table>