Stroke: What did we learn in the last year?

J. Claude Hemphill III, MD, MAS
Associate Professor of Clinical Neurology and Neurological Surgery
University of California, San Francisco
Director, Neurocritical Care
San Francisco General Hospital

Disclosures
Research Support: NIH/NINDS, Novo Nordisk
Consulting: Astra Zeneca, Novo Nordisk, Innercool Therapies
Stock options: Cardium Therapeutics (Innercool Therapies)

The Year in Acute Stroke

- **Ischemic**
 - Is IV t-PA safe in community practice?
 - Hemicraniectomy for large hemispheric infarction?
 - Rethinking TIA
 - Minocycline as neuroprotectant?

- **Intracerebral hemorrhage**
 - Does recombinant fVIIa improve outcome in non-warfarin ICH?
 - Do statins increase risk of ICH?

Stroke Facts

- 700,000 strokes/year in the U.S.
- 70% of patients survive an acute stroke
- 3,000,000 stroke survivors in the U.S.
- 3rd leading cause of death
- Leading cause of adult disability

Ischemic Stroke - Timeline

0 min
- Embolus Blocks Vessel
- No Symptoms

4-10 min
- Electrical Failure of Neurons
- Clinical Symptoms Begin
- Excitotoxins Released

4 min-hours
- Neuronal Death
- Membrane Breakdown
- Penumbra at Risk

hours-weeks
- Penumbral Region Compensates
- Symptoms Peak 72 hrs
- Rapid Clinical Recovery

2 weeks – 6 months
- Surviving Neurons & Other Hemisphere Compensate
- Logarithmic Recovery
Acute Ischemic Stroke Treatment

- **Reperfusion**
 - Reopening arterial occlusion
 - Improving collateral blood flow

- **Neuroprotection**
 - Stalling “ischemic cascade”

- **“Salvage” Therapy**
 - Managing complications of large stroke

IV t-PA in ischemic stroke

Inclusion Criteria
- Age ≥ 18
- Clinical diagnosis of acute stroke
- Can initiate treatment within 3 hours of onset of stroke
- head CT without hemorrhage
- More than minor stroke deficit

Exclusion Criteria
- complete hemiplegia (very large stroke)
- BP > 185/110 (sustained)
- glucose > 400 or < 50
- platelets <100,000
- INR > 1.7
- recent stroke, trauma, or surgery
- seizure at onset of stroke

IV t-PA in acute ischemic stroke

- dose - 0.9 mg/kg IV (maximum 90 mg)
 - 10% as bolus, remainder infused over 1 hour

- must begin treatment w/in 3 hrs of symptom onset

- avoid heparin, ASA, or clopidogrel for 24 hours

- Admit to ICU, keep BP < 185/110 for 24 hours

Outcome
- About 1.12 times as many patients treated with t-PA were normal at 3 months compared to placebo
 - t-PA 39% vs. placebo 26%

Mortality
- No difference between groups at 3 months
 - t-PA 17% vs. placebo 21%

Hemorrhage
- 6.4% of t-PA patients suffered a symptomatic intracranial hemorrhage
- 2.8% of t-PA patients died because of intracranial hemorrhage

NEJM 333: 1581-1587, 1995
Barriers to Adoption

- Patients presenting outside time window
 - Most common reason for exclusion
- Safety in “community practice”
 - Major barrier to adoption by ED physicians, general neurologists
 - Addressed by
 - Certifying Primary Stroke Centers (JCAHO)
 - Studying safety and outcome in community settings

SITS-MOST

- Safe Implementation of Thrombolysis in Stroke
 - Monitoring Study (Lancet 2007)
- Observational study of IV t-PA within 3 hours of acute ischemic stroke (2002-2006)
 - 6483 patients
 - 285 centers (50% w/o sig stroke thrombolysis exp)
- Required by European Union regulators

SITS-MOST

- Hemorrhage rate
 - 24 hours - 1.7%
 - 7 days - 7.3%
 - (consistent with 8.6% in pooled randomized trials)
- Mortality
 - 3 months - 11.3%
 - Consistent with 17.3% in randomized trials

SITS-MOST

- Functional outcome – as good or better than randomized trials

Conclusion
- Trial results can be replicated in community practice
- Stop making excuses (my conclusion)
Large Hemispheric Infarction

- Case – 43 yo man with acute complete L MCA ischemic stroke
 - Received IV t-PA w/in 3 hours of onset
 - 12 hours later, deteriorated to deep coma

Options?

1. Let him go
2. ICP monitoring
 - Mannitol, etc
3. Hypothermia
4. Decompressive hemicraniectomy
 - Evidence?

Decompressive Hemicraniectomy

- Allow herniation outwards, not inwards
- “Salvage” therapy not designed to improve deficit from original stroke

Hemicraniectomy

- Considered in
 - “Malignant” MCA infarction
 - Traumatic brain injury
 - ICH, SAH, CSVT

- Difficult to assess efficacy
 - Small trials
 - Sick population
 - Ethical issues
European Pooled Trial Results

- Prospective pooled analysis of 3 ongoing (at the time) trials of decompressive surgery in malignant MCA infarction
- DECIMAL, DESTINY, HAMLET
- Patient criteria
 - Age 18-60
 - Rx w/in 48 hrs of stroke onset
 - Randomized to surgery or conservative Rx
 - 93 patients

Outcome

![Outcome Diagram]

Number Needed to Treat (NNT)

![NNT Table]

Large Hemispheric Infarction

- Hemicraniectomy works
 - Major effect with very low NNT
- Caveats
 - Save lives to a disabled state
 - Many patients & families accept this
 - Study was done on age ≤ 60
 - Don't bias decision based on aphasia (stroke side)
 - Must do wide decompression & durotomy
Rethinking TIA

- Transient Ischemic Attack
 - Focal neurological deficit presumably due to ischemia and resolving completely within 24 hours of onset
- Old way
 - Go home and work up “expeditiously” (often within a week or so)
- New way
 - Treat as “unstable angina” of the brain

Stroke Risk after TIA

- 10.5% risk of stroke w/in 90 days
 - Half of strokes occurred within 2 days
- ABCD² score (points)
 - Age > 60 (1)
 - BP > 140/90 (1)
 - Unilateral weakness (2)
 - Speech impairment without weakness (1)
 - Duration > 60 min (2) or 10-59 min (1)
 - Diabetes (1)

Early Evaluation of TIA

- EXPRESS study - UK (Rothwell et al. Lancet Oct 9, 2007)
- Before/after study of immediate or referral TIA or minor stroke evaluation
 - TIA clinic with evaluation and urgent treatment (rather than referral to primary care)
- 90 day stroke rates
 - Before (clinic referral) 10.3%
 - After (immediate) 2.1%

EXPRESS

- What was done differently?
Early Evaluation of TIA

- 24 hour TIA clinic (seen w/in 4 hrs of presentation)
 - CT or MRI
 - Carotid U/S and or TCD
 - Urgent TTE or TEE if indicated
 - Labs

- Urgent TIA evaluation led to
 - 90 day stroke rate of 1.24%
 - ABCD² predicted rate of 5.96%

SOS-TIA

Panel: Criteria for admission to the stroke unit after assessment in the SOS-TIA clinic

A suspected or identified cause of TIA

- 24 hour TIA clinic
- CT or MRI
- Carotid U/S and or TCD
- Urgent TTE or TEE if indicated
- Labs

New Acute Stroke Trials

- Ischemic Stroke
 - Minocycline as neuroprotectant
 - Clopidogrel loading

- Intracerebral Hemorrhage
 - Recombinant factor VIIa to reduce hematoma expansion

Minocycline in Acute Ischemic Stroke

- Minocycline
 - Anti-inflammatory
 - Matrix metalloproteinase inhibitor
 - Inhibits apoptosis?

- Open-label, evaluator blinded study
- 152 patients
 - 74 minocycline 200 mg/d orally for 5 days
 - Starting 6-24 hours after stroke
 - 77 placebo

Lampl *Neurology* 2007
Minocycline in Acute Ischemic Stroke

Table 2. NIH Stroke Scale (NIHSS), modified Rankin Scale (mRS), and Barthel Index (BI) scores by time of both groups

<table>
<thead>
<tr>
<th></th>
<th>Minocycline treated group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS on admission</td>
<td>7.3 ± 3.2</td>
<td>7.6 ± 3.0</td>
</tr>
<tr>
<td>NIHSS on day 7, mean</td>
<td>6.5 ± 3.0</td>
<td>6.4 ± 4.1</td>
</tr>
<tr>
<td>NIHSS on day 30, mean</td>
<td>5.8 ± 2.1</td>
<td>7.1 ± 4.4</td>
</tr>
<tr>
<td>mRS on admission, mean</td>
<td>1.6 ± 1.9</td>
<td>1.5 ± 1.6</td>
</tr>
<tr>
<td>mRS on day 7, mean</td>
<td>1.3 ± 1.4</td>
<td>1.5 ± 1.3</td>
</tr>
<tr>
<td>mRS on day 30, mean</td>
<td>1.1 ± 1.2</td>
<td>1.2 ± 1.0</td>
</tr>
<tr>
<td>BI on admission, mean</td>
<td>70.0 ± 20.3</td>
<td>63.0 ± 20.4</td>
</tr>
<tr>
<td>BI on day 7, mean</td>
<td>85.9 ± 22.9</td>
<td>85.9 ± 20.8</td>
</tr>
<tr>
<td>BI on day 30, mean</td>
<td>90.0 ± 10.1</td>
<td>90.9 ± 20.6</td>
</tr>
<tr>
<td>BI on day 90, mean</td>
<td>44.0 ± 12.5</td>
<td>77.0 ± 24.0</td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhagic transform (n/N)</td>
<td>5 (6.6)</td>
<td>9 (11.1)</td>
</tr>
</tbody>
</table>

- Differences p < 0.0002 for each of the tests were fixed in NIHSS days 7, 30, and 90, mRS days 7, 30, and 90, and BI days 7, 30, and 90.

- Faster Assessment of Stroke and Transient ischemic attack to prevent Early Recurrence
 - Randomized factorial pilot trial
 - 392 TIA patients within 24 h of symptom onset
 - Clopidogrel
 - 300 mg loading dose then 75 mg daily (v. placebo)
 - Simvastatin 40 mg daily (v. placebo)

FASTER - results

- Trial stopped early due to failure to recruit because of increased use of statins
- 90 day stroke rates
 - Clopidogrel
 - Placebo
 - risk ratio 0.7 [95% CI 0.3-1.2]
 - Simvastatin
 - Placebo
 - risk ratio 1.3 [95% CI 0.7-2.4]

- The interaction between clopidogrel and simvastatin was not significant (p=0.64).

Hematoma Expansion in ICH

- Initial CT
- 10 hours later
Ultra-Early Hemostatic Therapy for ICH

- GOAL: to limit ongoing bleeding and reduce ICH volume in a substantial proportion of patients
- Use as the emergency room counterpart of t-PA for acute ischemic stroke
- Trial agent: Recombinant factor VIIa

NovoSeven ICH Trial

Estimated Mean Percent Change in ICH Volume at 24 Hours

Bars represent 98.3% confidence intervals

Survival at 90 Days According to Study Group

Modified Rankin Scale at Day 90

- **160 µg/kg**
- **80 µg/kg**
- **40 µg/kg**
- **Placebo**

FAST Trial

- Phase III Trial of rFVIIa in acute ICH
- FAST trial under way globally since May 2005; completed in November 2006
 - >120 global sites; 70 US sites
 - 841 patients randomized; 821 patients dosed
- Largest ICH medical trial ever conducted
- Protocol similar to phase IIb trial
- rFVIIa 80 µg/kg vs 20 µg/kg vs placebo

FAST: Primary Results

<table>
<thead>
<tr>
<th>Hematoma Growth at 24 hrs</th>
<th>Placebo</th>
<th>20 µg/kg</th>
<th>80 µg/kg</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % change</td>
<td>26%</td>
<td>18%</td>
<td>11%</td>
<td>0.0004</td>
</tr>
<tr>
<td>Absolute difference</td>
<td>7.8 ± 18.7</td>
<td>4.7 ± 14.8</td>
<td>3.8 ± 15.3</td>
<td>0.009</td>
</tr>
</tbody>
</table>

- Dramatic effect on reducing hematoma expansion
 - Similar to phase IIb study

Clinical Outcome at 90 days

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>20 µg/kg</th>
<th>80 µg/kg</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Rankin Score ≤ 5</td>
<td>24%</td>
<td>26%</td>
<td>29%</td>
<td>NS</td>
</tr>
<tr>
<td>Mortality</td>
<td>19%</td>
<td>18%</td>
<td>21%</td>
<td>NS</td>
</tr>
</tbody>
</table>

- Clinical outcome not affected by treatment
 - Different than phase IIb study

Mayer SA. Presented at the American Academy of Neurology 59th Annual Meeting; April 28-May 5, 2007; Boston, Massachusetts.
FAST: Safety Results

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>20 µg/kg</th>
<th>80 µg/kg</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Thrombotic Events</td>
<td>5%</td>
<td>6%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Cerebral Infarction</td>
<td>0.8%</td>
<td>2.2%</td>
<td>3.2%</td>
<td>0.14</td>
</tr>
</tbody>
</table>

- No difference in
 - Hydrocephalus
 - Venous thromboembolism (e.g. DVT, PE)
- Safety profile similar to phase IIb
- Most MI and cerebral infarctions of limited clinical significance

Mayer SA. Presented at the American Academy of Neurology 59th Annual Meeting; April 28-May 5, 2007; Boston, Massachusetts.

FAST Trial: Conclusions

- Neutral study – no clinical benefit at 90 d
- Dramatic effect on reducing hematoma expansion
- Increase in arterial thrombotic events
- Why different clinical results from phase IIb?

FAST Trial: What Happened?

- Many patients with severe ICH at baseline “unable to be saved”?
 - Elderly, large ICH volume, large IVH volume, poor GCS
- Imbalance in randomization favored placebo
 - Example: IVH in 41% of rVIIa 80 µg/kg, but only 29% in placebo
- Lack of clinical benefit does not seem (on initial analysis) to be a result of arterial thrombotic events
- Subgroup benefit?
 - Example: patients age < 75, treated w/in 3 hrs
 - Beneficial effect of reducing hematoma expansion with rFVIIa irrespective of baseline ICH volume and IVH volume
- Where to go from here?

Do statins cause ICH?

- SPARCL study (NEJM 2006)
 - Randomized trial
 - Atorvastatin 80 mg/d v. placebo

Hazard ratio of 1.66 (95% CI 1.08-2.55) for hemorrhagic stroke

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard ratio (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin treatment</td>
<td>1.4 (1.10, 2.40)</td>
<td>0.02</td>
</tr>
<tr>
<td>Male gender</td>
<td>1.77 (1.11, 2.81)</td>
<td>0.02</td>
</tr>
<tr>
<td>Age, 10 y increment</td>
<td>1.37 (0.62, 2.99)</td>
<td>0.003</td>
</tr>
<tr>
<td>Entry event – hemorrhagic stroke</td>
<td>6.83 (2.91, 15.60)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>Hypertension (SBP >120 and DBP >80 mmHg)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pre-hypertension (SBP 120-159 or DBP 80-89 mmHg)</td>
<td>3.18 (0.76, 13.34)</td>
<td>0.11</td>
</tr>
<tr>
<td>Stage 1 hypertension (SBP 140-159 or DBP 90-99 mmHg)</td>
<td>3.49 (0.33, 34.63)</td>
<td>0.09</td>
</tr>
<tr>
<td>Stage 2 hypertension (SBP ≥160 or DBP ≥105)</td>
<td>6.19 (1.47, 26.11)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Interpretation

- Statins probably really do increase the risk of hemorrhagic stroke
- Not clearly an LDL level effect
- Risk of ICH probably offset in patients with ischemic stroke or TIA by benefit in ischemic stroke prevention
- Should ICH patients get high-dose statins (probably not; my view)

The Year in Stroke

- Lots of new information
 - Some good
 - Some not so good
- Central concepts
 - Ischemic stroke
 - Revascularization
 - Treating large hemispheric infarction
 - TIA as a neurologic emergency
 - ICH
 - Hematoma expansion
- Conclusions
 - IV t-PA is part of standard care
 - Hemicraniectomy works
 - ICH remains without a treatment of clinical benefit (but at least a first “disease modifying” approach has been identified)