Minority Issues in Aging Research

Mary Sano, Ph.D
Mount Sinai School of Medicine
Bronx Veterans Medical Research Center
130 West Kingsbridge Rd
Bronx NY, 10468
Phone: 718 741-4228; Fax: 718 562-9120
Mary.Sano@mssm.edu

Outline

• Why Participate in Research?
• Who Should Participate?
• What have we learned?
 – Development of Cognitive and behavioral assessments
 – Multi-cultural work to develop norms
 – Identifying research initiatives

Why Participate in Research

• Altruism
• Standardized evaluations
• Access to up-to-date research initiatives
• Potential for earliest access to new medications
• Support for family and friends
• Contribution from self to family, society***

The Role of Research in the Clinical Setting

• Research participation holds the hope for the best disease management and eradication
• Introduced early
 – At first visit for observational/longitudinal studies
 – At diagnosis for biomarker and other physiological studies
 – As part of the treatment discussion for clinical trials
Who should participate:
(Ethical Framework of Design…)

(1) potential scientific and clinical value of the research question,
(2) scientific validity of study design;
(3) fair selection of research subjects,
(4) favorable risk-benefit ratio,
(5) informed consent;
(6) prospective independent review, and
(7) respect for enrolled subjects.

Miller & Silverman 2004

Golden Rule for Inclusion/Exclusion Criteria

• The role of eligibility criteria is to insure efficacy can be measured and safety is maximized
 • Who is the target population?
 • How common is that outcome in the population?
 • Do known factors change the likelihood of outcome or safety of treatment?
• Every exclusion reduces the generalizability and applicability of findings

Challenges to Inclusion of Minorities

• Language
• Geography
• Time
• In dementia research the need for a study partner can exclude many people
 – To assist in evaluating change
 – To insure safety

Over 65 and Living Alone in US

20% of Men and 40% of women over 65 live alone
Possible Cultural Advantage

Likelihood of living alone among Asian Community in US is Low: 2.3%

Cultural Challenge: Identifying Cognitive loss

- Neuropsychological tests are often used to identify mild problems in memory and thinking
- Compare individual to “healthy” other
- Compare performance between different aspects of cognition
- Compare new learning to old learning

Need for Normative Data

- For diagnostic purposes and cross-sectional prevalence estimates, detection depends a comparison to “normal”
- Performance lower than the norm is assumed to be a deterioration for the individual
- The norm is expected to capture effects due to age, education, culture etc.

Assessing Specific Functions

- Memory: Most commonly assessed cognitive function in aging
 - Is best predictor of early decline
 - Associated with specific types of diseases
 - Well established norms across many cultures
 - Norms available through eighth and ninth decade
Assessing Memory

• Normative data is critical but some aspects may be universal
 – Working memory: 7 +- 2
 – Delayed Recall: 4 + -1
• Type of tests may be differentially sensitive to culture.
 – Paragraph recall: context and grammatical structure can modify memorability
 – List Learning: may be less affected by culture but word frequency and imageability must be controlled

Assessing Executive Function

• Executive function: planning, initiative, sequencing, organization
• Normative data is limited
 – Age, gender and cultural impact need to be assessed
 – Guidelines for defining deficit for the generalist is needed
 – Discriminability in other dementias
 – Impact on function is not well characterized

Executive Function

• Measurable Deficit
• Distinguishable from memory
• May be an independent contributor to diagnosis
• May be an early predictor of dementia in some populations

Predicting Functional Loss

• Elderly Resident (Mean age >80) (N=288)
• Instrumental activity daily living (CDR)
• Cognitive Assessment:
 – (Word List Recall, Delayed Recall, Recognition,
 – Boston Naming, Verbal Fluency,
 – Trailmaking A and B, and
 – Digit Symbol Substitution).

<table>
<thead>
<tr>
<th>Test</th>
<th>Factor 1: Information and Executive Function</th>
<th>Factor 2: Learning and Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trails Part B (131)</td>
<td>0.759</td>
<td>0.128</td>
</tr>
<tr>
<td>Digit Letter</td>
<td>0.857</td>
<td>0.399</td>
</tr>
<tr>
<td>Digit Symbol</td>
<td>0.842</td>
<td>0.240</td>
</tr>
<tr>
<td>Boston Naming</td>
<td>0.899</td>
<td>0.145</td>
</tr>
<tr>
<td>Verbal Fluency</td>
<td>0.222</td>
<td>0.798</td>
</tr>
<tr>
<td>Reason for Test</td>
<td>0.131</td>
<td>0.495</td>
</tr>
<tr>
<td>Active Recall</td>
<td>0.512</td>
<td>0.882</td>
</tr>
</tbody>
</table>

 Note: Results are principal component analysis with varimax rotation.

Comparison of Non-demented Nonogenarians

- **New York Sample**
 - At least 90 years of age (range 90.00-100.65)
 - Non demented (CDR = 0)
 - $N = 62$ (40 Females)
 - 2 Education levels:
 - Medium (7-12 years), $n = 14$
 - High (> 12 years), $n = 48$

- **Puerto Rico Sample**
 - At least 90 years of age (range 90.07-98.65)
 - Nondemented (CDR = 0)
 - Initial $N = 82$ (47 Females)
 - 3 Education levels:
 - Low (0-6 years), $n = 29$
 - Medium (7-12 years), $n = 33$
 - High (> 12 years), $n = 20$

NY and PR 90+ Similar on Memory

<table>
<thead>
<tr>
<th>Measure</th>
<th>NY</th>
<th>PR</th>
<th>NY vs. PR</th>
<th>Educ. Sig</th>
<th>Age Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>27.81</td>
<td>27.72</td>
<td>0.259</td>
<td>0.007</td>
<td>0.312</td>
</tr>
<tr>
<td>Word List Total</td>
<td>18.90</td>
<td>16.40</td>
<td>0.165</td>
<td>0.004</td>
<td>0.904</td>
</tr>
<tr>
<td>Delayed Recall</td>
<td>5.95</td>
<td>4.75</td>
<td>0.059</td>
<td>0.125</td>
<td>0.310</td>
</tr>
<tr>
<td>Word List Recognition</td>
<td>19.33</td>
<td>18.72</td>
<td>0.385</td>
<td>0.013</td>
<td>0.711</td>
</tr>
<tr>
<td>Savings</td>
<td>76.61</td>
<td>68.82</td>
<td>0.282</td>
<td>0.409</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Cultural Cohorts Differ in Performance of Timed Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>NY</th>
<th>PR</th>
<th>NY vs. PR</th>
<th>Educ. Sig</th>
<th>Age Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluency (animals)</td>
<td>14.19</td>
<td>14.34</td>
<td>0.206</td>
<td>0.025</td>
<td>0.555</td>
</tr>
<tr>
<td>Trails A, time (sec)</td>
<td>75.33</td>
<td>140.66</td>
<td>0.000</td>
<td>0.534</td>
<td>0.857</td>
</tr>
<tr>
<td>Trails B, time (sec)</td>
<td>179.96</td>
<td>259.21</td>
<td>0.000</td>
<td>0.675</td>
<td>0.775</td>
</tr>
<tr>
<td>Praxis</td>
<td>9.42</td>
<td>8.58</td>
<td>0.173</td>
<td>0.174</td>
<td>0.739</td>
</tr>
<tr>
<td>Boston</td>
<td>13.19</td>
<td>12.91</td>
<td>0.918</td>
<td>0.102</td>
<td>0.953</td>
</tr>
</tbody>
</table>

Assumptions of cognitive performance

- The predictive interpretation assumes that cognitive performance represents decline for the individual
- Assumption is that the effect due to normal aging can be eliminated by comparison to cross-sectional normative data
- Generational effects may not be captured with cross-sectional norms
Longitudinal Assessment

- Reduces dependence on norms
- In general performance demonstrates a practice effect for years
- May be best way to insure early detection
- Provides incidence rates which may be most important for cultural comparison.

Spanish Instrument Protocol

- To develop instruments for clinical trials
- Longitudinal Assessment of US dwelling Spanish speakers with Alzheimer Disease
- Subjects selected within MMS strata
- Controls required to have MMS ≥ 27
- Parallel study conducted in English speakers

Frequency of Most Common Agitated Behaviors Identified by the CMAI

<table>
<thead>
<tr>
<th>Spanish Speaking Patients</th>
<th>English Speaking Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeating sentences</td>
<td>85.5</td>
</tr>
<tr>
<td>Restlessness</td>
<td>57.9</td>
</tr>
<tr>
<td>Uncooperativeness</td>
<td>57.1</td>
</tr>
<tr>
<td>Complaining</td>
<td>56.6</td>
</tr>
<tr>
<td>Pacing</td>
<td>56.0</td>
</tr>
<tr>
<td>Repeating sentences</td>
<td>80.9</td>
</tr>
<tr>
<td>Restlessness</td>
<td>63.5</td>
</tr>
<tr>
<td>Uncooperativeness</td>
<td>53.1</td>
</tr>
<tr>
<td>Pacing</td>
<td>49.0</td>
</tr>
<tr>
<td>Complaining</td>
<td>48.1</td>
</tr>
</tbody>
</table>
Identifying Research Initiatives

- Resveratrol found in red wine slowed clinical change in patients.
- Clinical trial in Alzheimer disease
- Funded by Alzheimer Association
- Will provide a model for national trial

What can I do

- Take care of your health
- Keep yourself informed
- Support Research
 - Participate
 - Help someone else participate
 - Encourage funding

Not all studies for all participants

- Inclusion criteria needed to
 - Insure safety
 - Limitations by age co-morbidities other medications
 - Insure the ability to measure efficacy
 - Hearing or visual difficulties make it difficult to determine if the drug is working

Risk Benefit Ratio

- Determined both study wise and subject wise
- If the study does not give a useful answer the benefit of the study is low
- If subjects are exposed to unnecessary harm (side effect, inconvenience etc) the risk is
How to Choose

- Select a study of interest
- Work with people you trust
- Be honest about how much you can participate
- Ask questions

Remember you can always change your mind

Alzheimer Disease Centers

- NIA centers for clinical and basic science research in AD and other dementias
- Clinical evaluation, research and education for patients and families
 - Clinical and neuropsychological evaluation
 - Brain donation program**
 - National centralized data base
- Information resource for professionals

Information on AD Research

- Alzheimer’s Association: NYC Chapter
 - 212-983-0700
 - www.alzheimernyc.org
- Alzheimer Disease Education and Referral Center
 - 800-438-4380
 - www.alzheimers.org

Many Thanks

- José R. Carrión-Baralt, Ph.D., Josefina Meléndez-Cabrero, M.S., Michal Beeri-Schneider, Ph.D., Jeremy M. Silverman, Ph.D.
- Susan Egelko, PhD, Sheilia Jin, MD, MS, Jeffrey Cummings, MD, Christopher M. Clark, MD, Sonia Pawluczyk, MD, Ronald J. Thomas, PhD, Mario Schititini, MD, MPH, Leon J. Thal, MD, and the members of the Alzheimer’s Disease Cooperative Study
Some Say “It Takes a Village”

Really “It Takes a Great Team”