Neurosurgery Update
In The Wine Country 2007

Surgical Management of Meningiomas

Saturday, Aug. 4, 2007

Michael W. McDermott, M.D.
Departments of Neurological Surgery & Radiation Oncology
UCSF

Outline

- When, why to operate
- Surgical Nuances
 - Sphenoid wing
 - Tuberculum sellae
 - Convexity, falx, parasagittal
 - Falcotentorial
 - Foramen magnum
- Options for treatment
 - radiotherapy
 - radiosurgery
 - brachytherapy

Disclosure

- co-inventor medical device with Integra Neuroscience
- Patent rights signed over to University of California
- Device not related to this presentation

Materials and Methods

- UCSF departmental database
 - Meningioma Surgical cases 905
 - Acoustic Neuroma 357
 - Transphenoidal 1171
 - Gamma Knife cases 2085
 - Glioma cases 2578

When & Why to Operate

- Treat the patient and not the scan!
- symptomatic?
 - symptoms match tumor location?
- asymptomatic?
 - age
 - number of life years left to live
 - natural history
 - calcified or not?
 - Japan: 42% did not grow in first year of observation

- decision for surgery
 - real risk factors
- pre-operative
 - angio
 - angio / embo
- intra-operative
 - "experience" -> Malis said 300 cases
 - 2 surgeons for cases over 6 hours
- post-operative
 - anticonvulsants for 7 days
 - lovanox 40 mg s.c. for 7 days
 - no dehydration!
Sphenoid Wing Meningiomas

- Reinert et al. 2006
 - 201 cases
 - 102 asymptomatic
 - 99 with symptoms
 - new morbidity in 39%
 - radical removal in 80%
 - “results worse than SRS”

Sphenoid Wing Meningiomas
Surgical Technique

- Sphenoid Wing Meningiomas
 - McDermott ‘90
 - 8 patients
 - 8/8 proptosis
 - 2/8 reduced acuity
 - Results
 - Total removal 5/8
 - Improved acuity FC -> 20/50
 - Periorbital excision / graft -> 6/8
 - Complications:
 - 5/8 squint
 - 2/8 CSF leak
 - No pulsating exophthalmos
 - Cosmetic results:
 - Excellent in 7/8
Clinoid Meningiomas

- Most common symptoms:
 - visual loss 54%
 - headache 27%
 - diplopia 15%

- Visual deficits
 - unilateral 86%
 - chiasmatic effects of papilledema
 - fields + acuity 79%

- Results:
 - Risi '94
 - 34 pts.
 - 20/34 GTR
 - vision improved 68% worse 32%
 - mortality 6% major morbidity 9%
 - Tobias '03
 - 26 pts.
 - 20/26 GTR
 - vision improved 77%
 - mortality 0% major morbidity 0%

Skull base approach

- extradural removal of:
 - sphenoid wing
 - clinoid
 - roof and lateral wall of canal

- find optic nerve first
 - open sheath to find nerve
 - with landmark open dura
 - remove tumor
 - cover dural opening with collagen sponge, pericranial flap
Tuberculum Sellae Meningiomas

- Tuberculum meningiomas account for 4 – 10% of cases
- Displace the optic nerve posterior and slightly superiorly
- Difficult to remove
- Controversy over best approach

Approaches

- Pterional
- Cranio-orbital
- Subfrontal
 - unilateral
 - bilateral
- Extended bi-frontal
Extended Bifrontal Study

Methods:
- 1997 – 2005
- FLAIR/T2 changes
 - A no edema
 - B gyrus rectus
 - C beyond gyrus
 - D extensive bifrontal

Results:
- 45 patients
- 54% tumors > 4 cm.
- avg. OR time 12.3 hours
- improved vision in 74%
- edema unchanged in 87.5%
- 91% group A or B
- no infections, 2 CSF leaks

Convexity, Falx & Parasagittal Meningiomas : Clinical

Convexity
- classification by site:
 - precoronal
 - coronal
 - post coronal
 - paracentral
 - parietal
 - occipital
 - temporal

Convexity
- surgery simple
 - image guidance for skin / bone flap planning
 - Barnett et al. 1995
 - Routine avoids wrong side operations
 - positioning
 - for large occipital (prone) consider lumbar drain
 - excise margin of adjacent dura
 - Kinjo et al. “Grade Zero”
 - at deep margin pial surface denuded
 - Edema is key: more common the larger the tumor
 - pericranial graft
 - excise involved bone
 - cranioplasty
Convexity, Falx & Parasagittal Meningiomas: Clinical

- Falx
 - completely concealed by overlying cortex
 - 2 - 10%
 - when combined with parasagittal
 - up to 31%
 - headaches, seizures, focal deficit
 - falcotentorial meningioma rare
 - presents with visual disturbance and elevated ICP

classification by site:
- anterior
- middle
- posterior

surgery by site
- anterior
 - bifrontal*
 - Supine, head up 10-15%, no rotation, LSAD
- middle
 - Biparietal
 - Supine, head up 30%, no rotation, LSAD
- posterior
 - Bi-occipital
 - Prone, head up 10-15%, no rotation, LSAD
* best to cross midline to assist medial exposure
- excise falx rather than just coagulating below SSS

Cross midline with flap

LSAD for larger tumors
Same approach – debulk then dissect
Convexity, Falx & Parasagittal Meningiomas: Clinical

- Parasagittal
 - fill angle between
 - convexity dura
 - lateral wall of SSS
 - falx
 - 21 - 31% of tumors
 - same classification as falx
 - anterior, middle, posterior
 - origin at arachnoid granulations in lateral wall of SSS where large veins enter
 - Sindou et al.

Surgery

- same positioning issues as for falx
- with advent of radiosurgery techniques for excision and reconstruction of SSS more or less abandoned
- one option: low activity brachytherapy implant along wall of SSS and gold foil to protect medial hemisphere

Falcotentorial Meningiomas

- Falcotentorial meningiomas
 - anatomic details
 - surgical approach
 - personal series
 - complication of visual disturbance
 - discussion

- Meningiomas 2nd most common primary tumor

- Common locations:
 - falx/parasagittal, sphenoid wing, olfactory
 - FTM less than 2% of all locations
 - fewer than 60 cases since 1974

- Personal cases:
 - 2002 Jan - Dec 58
 - 2003 Jan - Dec 85
 - over 14 years 9 FTM (1.6%)

Skin Incision

Bone Flaps
Dural Openings

Falx Incision

Aiming for free edge above confluence of veins

Tentorial Incision

Free edge of tentorium

Tentorial incision

Tentorial incision
Results

- Tumor size -> large!
 - Mean max. dimension: 5.4 cm.
 - Mean volume: 64 cc.

- Operating time -> long!
 - Mean OR time: 16 hrs.
 - Range: 12.5 – 23.5 hrs.

Results

- WHO II Grade
 - Grade I: 7/9
 - Grade II: 1/9
 - Grade III: 1/9 (post XRT)

- Simpson extent of resection
 - Grade I: 5/9
 - Grade II: 4/9
 - 3/4 required SRS for recurrence

- Surgical complications
 - Hydrocephalus: 1/9
 - Pseudomeningocele: 9/9

Results

- Transient cortical blindness or hemianopsia
 - Cortical blindness: 9/9
 - Full recovery: 8/9
 - Partial recovery: 1/9 (post XRT)
 - Visual fields
 - Worse post op: 9/9
 - Mild: 8/9
 - Severe: 1/9 (post XRT)

- Visual fields
 - Worse post op: 9/9
 - Mild: 8/9
 - Severe: 1/9 (post XRT)
Far Lateral Suboccipital Craniotomy

- pub med

- D’Ambrosia et al. Neurosurgery 2004
 - 15% CSF leak
 - 11% new 10th palsy
 - 10% PEG
 - 5% tracheotomy

Pre-Operative Considerations

- lower cranial nerve status
 - no dysfunction pre-op
 - good prognosis
 - hoarseness, dysphagia
 - pre-op neuro-otology evaluation
 - counsel patient about trach / PEG

- motor dysfunction
 - does patient have symptoms with neck turning
 - book MEPs
 - anesthesia to maintain MAP
 - baseline after positioning before incision
Options for Treatment

- Radiotherapy
 - fractionated 3D CRT
 - fractionated stereotactic radiotherapy
 - number of fractions that is ideal?
 - intensity modulated radiotherapy
 - radiosurgery
 - brachytherapy

Options for Treatment

- radiosurgery
 - Pollock et al. 2003
 - 156 resected
 - 62 irradiated
 - radiosurgery equivalent to Simpson Grade 1 resection
 - 3 & 7 year PFS
 - radiosurgery superior to Simpson Grade 2,3,4
 - complications:
 - 10% GKRS
 - 22% surgery

Options for Treatment

- radiosurgery for parasagittal meningiomas
 - Kondziolka et al. 1998
 - 203 patients from 16 centers
 - 5 yr. control rate
 - 93% radiosurgery alone
 - 60% prior surgery
 - recommended GKRS as 1st procedure for tumors < 3 cm with patent sinus
Options for Treatment

- Brachytherapy
 - Ware et al. 2004
 - 17 malignant meningioma
 - 4 atypical meningioma
 - all recurrent
 - overall survival:
 - 2.6 yrs from implant
 - 8.0 yrs from diagnosis
 - complication rate 27%

Summary

- Not all meningiomas require surgery at diagnosis
- Pre-op: angio, angio / embo
- Intra-op: 2 surgeons for > 6 hours
- Post-op: lovanox, no dehydration
- Remember: surgery one component of treatment

Acknowledgements

Meningioma Lab
Anita Lal-Director
Allison S Slocum
Gilson S Bai
Heon Yoo
Time Bank
Cynthia Cowdrey
King Chiu
Neuropathology
Andrew Bollen
Scott VandenBerg

In Vivo Model Systems
Dennis F Deen
Tomoko Ozawa
Collaborator
Stefano Stifani, McGill University

Funding
Sonntag Foundation