Recent Advances in the Pathology of Pulmonary Infections

Kirk D. Jones, MD
UC San Francisco
kirk.jones@ucsf.edu
Current Advances in the Pathology of Lung Infections
Overview - Viral Pneumonias

- Viruses which are identifiable on H&E
- Current Common Diagnostic Tests
 - Direct Fluorescent Assay
 - PCR-based Assays
- Development of the Virochip
 - SARS epidemic
 - Diagnostic uses

Identifiable Viruses

- Viruses can be identified by:
 - Presence of inclusions.
 - Location of inclusions.
 - Cellular changes
 - Multinucleation
 - Cytomegaly

Viral Pneumonias - Histology

- Patterns of Disease
 - Diffuse alveolar damage
 - Fibrinous organizing pneumonia
 - Necrotizing pneumonia
 - Necrotizing bronchiolitis
 - Organizing pneumonia
 - Pulmonary edema
 - Cellular bronchiolitis
 - Cellular interstitial pneumonia (including perivascular)
 - Pulmonary alveolar proteinosis
For Example

• 65-year-old man status post lung transplant
 – 3 months earlier for severe emphysema
• Now with ground glass changes on CT
• Transbronchial and endobronchial biopsies

Viral Pneumonias - Histology

• Patterns of Disease
 – Diffuse alveolar damage
 – Fibrinous organizing pneumonia
 – Necrotizing pneumonia
 – Necrotizing bronchiolitis
 – Organizing pneumonia
 – Pulmonary edema
 – Cellular bronchiolitis
 – Cellular interstitial pneumonia (including perivascular)
 – Pulmonary alveolar proteinosis
Case 1 - Continued

• While an airway infection is favored, the possibility of rejection was considered.
• Cultures negative.
• Viral tests performed
 – Direct Fluorescent Antibody Assay

Traditional Diagnostic Methods

• Viral isolation and culture
 – 3 or 4 cell lines and embryonated hen eggs
 – 8 to 10 days for culture
• Shell vial cultures in 1990s
 – Combined with monoclonal antibodies
 – 1 to 2 days for identification
• Serologic studies
 – Testing paired acute and convalescent sera

DFA for Viruses

• Lavage cells sent for examination
 – Often performed on nasopharyngeal samples
• Typically tests for eight viruses
 – Respiratory syncytial virus
 – Influenza A and B
 – Parainfluenza types 1, 2, 3
 – Adenovirus
 – Human metapneumovirus
Case 1 - Continued

• While an airway infection is favored, the possibility of rejection was considered.
• Cultures negative.
• Viral tests performed
 — Direct Fluorescent Assay
 • NEGATIVE
 — PCR-based Viral Test

• PCR positive for rhinovirus
• The common cold can be uncommonly troubling for the transplant patient
 — In the current patient, the infection lasted four months.

PCR-Based Viral Test

• Also performed on BAL material
• Uses several primers for each virus (or random hexamers) paired with capture material.
• Typically tests for similar as DFA (plus rhinovirus)
 — Respiratory syncytial virus A and B
 — Influenza A (H1, H3) and B
 — Parainfluenza types 1, 2, 3
 — Adenovirus
 — Human metapneumovirus
 — Rhinovirus

fig. 1. the swine flow.
Severe Acute Respiratory Syndrome

- Nov. 2002 Initial cases in Guangdong province
- Feb. 2003 American businessman dies
- March 2003 WHO issues alert

- 8,273 cases with 775 deaths, 9.4% fatality
 - (2009 Swine Flu 13,000 cases with 100 deaths, 0.7%)

SARS

- Flu-like illness
 - Temperature greater than 38 degrees C
 - Myalgias
 - Lethargy
 - Cough
 - Sore throat
 - Later dyspnea
 - Occasional progression to ARDS

2003 SARS outbreak

- Images of people wearing masks and looking at signs.
Rewind Three Years

- Joe DeRisi
- Was there a way we could test for every virus using a single test?
- Balance between rapid viral evolution and ultraconservation
Original Virochip

- DeRisi and David Wang
- Based on genomes of viruses from known human pathogens.
- Used highly conserved sequences.
 - ~1,600 oligos
 - ~140 viruses

Rapid SARS coronavirus identification

- Feb 2003 ~150 cases and 5 deaths in Guangdong Province, China
- March 12 – Suspected cases in 7 countries; WHO issues SARS global alert
- March 14 – CDC activates emergency operations, joins WHO consortium
- March 22 – DeRisi, with some begging, receives samples from the CDC

Virochip detects oligos from two virus families

<table>
<thead>
<tr>
<th>Oligo ID</th>
<th>Virus</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>9635576_275</td>
<td>Turkey astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>9635572_255</td>
<td>Ovine astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>20514394_269</td>
<td>Avian nephritis virus</td>
<td>Astro</td>
</tr>
<tr>
<td>9630726_269</td>
<td>Human astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>9626535_1099</td>
<td>Avian infectious bronchitis virus</td>
<td>Corona</td>
</tr>
<tr>
<td>1217544_766</td>
<td>Bovine coronavirus</td>
<td>Corona</td>
</tr>
<tr>
<td>1217545_728</td>
<td>Human coronavirus 229E</td>
<td>Corona</td>
</tr>
<tr>
<td>9626535_568</td>
<td>Avian infectious bronchitis virus</td>
<td>Corona</td>
</tr>
</tbody>
</table>

Methodology

- Isolate RNA and reverse transcribe into cDNA.
- Amplify by Random PCR.
- Couple fluorescent dyes to DNA.
- Mix fluorescent DNA and hybridize to the microarray.
- Data Analysis.
Five oligos detect the same sequence

Conserved RNA motif shared by 3’ UTRs of astroviruses and several coronaviruses (Jonassen et. al, 1998)

Virochip detects oligos from two virus families

<table>
<thead>
<tr>
<th>Oligo ID</th>
<th>Virus</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>9635576_275</td>
<td>Turkey astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>9635572_255</td>
<td>Ovine astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>20014394_269</td>
<td>Avian nephritis virus</td>
<td>Astro</td>
</tr>
<tr>
<td>9630726_269</td>
<td>Human astrovirus</td>
<td>Astro</td>
</tr>
<tr>
<td>9626535_1099</td>
<td>Avian infectious bronchitis virus</td>
<td>Corona</td>
</tr>
<tr>
<td>12176144_766</td>
<td>Bovine coronavirus</td>
<td>Corona</td>
</tr>
<tr>
<td>9626535_568</td>
<td>Avian infectious bronchitis virus</td>
<td>Corona</td>
</tr>
</tbody>
</table>

Virochip suggests a divergent coronavirus

Rapid SARS coronavirus identification

- Feb 2003 ~150 cases and 5 deaths in Guandong Province, China
- March 12 – Suspected cases in 7 countries; WHO issues SARS global alert
- March 14 – CDC activates emergency operations, joins WHO consortium
- March 22 – DeRisi Lab receives samples from the CDC
- March 23 – Virochip results suggest novel coronavirus
- March 24 – CDC: “…a previously unrecognized virus from the coronavirus family is the leading hypothesis…”
Viral sequence recovery

Virochip growth

- Virochip (2001) – David Wang
 - Based on genomes of viruses from families with known human pathogens
 - Most conserved sequences
 - ~1,600 oligos (140 viruses)

- MegaViro (2002)
 - Based on every Reference viral genome in GenBank (human, animal, plant, bacteriophages)
 - ~12,000 oligos (~950 viruses)

- Viro3 (2004) – Kael Fischer
 - Based on every viral sequence in GenBank
 - Most new oligos – genus and species conservation
 - ~20,000 oligos (~1800 viruses)

Rapid SARS coronavirus identification

- Feb 2003 – ~150 cases and 5 deaths in Guandong Province, China
- March 12 – Suspected cases in 7 countries; WHO issues SARS global alert
- March 14 – CDC activates emergency operations, joins WHO consortium
- March 22 – We receive samples from the CDC
- March 23 – Virochip results suggest novel coronavirus
- March 24 – CDC: “…a previously unrecognized virus from the coronavirus family is the leading hypothesis…”
- April 1 – Recover ~2 kb of viral genome, sent to CDC
- April 14 – SARS coronavirus genome sequenced by BCCA and CDC
- April 17 – Evidence for causality: infection of monkeys and recovery of virus

E-Predict Development

- Designed as a method of “auto-diagnosis” necessitated by the number of viral oligos.
- Uses algorithm for interpreting Virochip hybridization patterns to identify viruses.
- Theoretical hybridization energy profiles circumvent the need for positive controls.
- Mixed viral infections can be detected.
E-Predict Development

Virochip Diagnosis Case 1

- Previously healthy young woman with 10 day history of fever, cough, night sweats, bloody sputum, and muscle pain.
- 3 days prior, treated with antibiotics.
- 3 days after admission progresses to respiratory failure.

(Chiu, CY, Clinical Infectious Diseases, 2006)

Diagnostic Tests:
- blood, urine, and sputum viral, bacterial, and fungal cultures
- urine Legionella antigen
- Serum rheumatoid factor and anti-nuclear antibody
- Coccidioidomycosis, histoplasmosis, Mycoplasma, Chlamydia Ab titers
- HIV serum antibody
- Bordetella pertussis DFA and PCR
- Immunofluorescence test for Pneumocystis jiroveci
- Serology tests for blastomycosis, tularemia, sporotrichosis, Q fever, and leptospirosis

Viral Assays:
- shell vial assay for cytomegalovirus
- DFA tests for respiratory syncytial virus, adenovirus, influenza A/B, parainfluenza virus types 1, 2, and 3
- Metapneumovirus PCR
- SARS coronavirus PCR
- ELISA for hantavirus (Sin Nombre)

All tests returned negative.

ViroChip Analysis:
Endotracheal aspirate from hospital day 4.
Virochip Diagnosis Case 1

• Identified Parainfluenza Virus 4
 — Not even on the DFA panel
 — Thought to not cause severe disease
 — Made it into the medical lore
• Virochip identifies a pathogen previously unrecognized as clinically significant.

Virochip Diagnosis Case 2

• 65 year old man with CLL
• Recent cruise to Greece and Turkey
• Worsening respiratory status despite Abx
• Progressive dyspnea – intubated on HD3

Diagnostic Tests:
• Blood, urine, and sputum viral, bacterial, acid-fast bacilli, and fungal cultures
• Urine Legionella antigen
• Serum rheumatoid factor and anti-nuclear antibody
• Serum Cryptococcus antigen
• Histoplasma urine antigen and histoplasma buffy coat
• Coccioidiomycosis, histoplasmosis, Mycoplasma, Chlamydia Ab titers
• HIV serum antibody
• Bordetella pertussis DFA and PCR
• Immunofluorescence test for Pneumocystis jiroveci
• Serology tests for blastomycosis, tularemia, sporotrichosis, Q fever, and leptospirosis
• Cytology of bronchoalveolar lavage fluid: (-) malignancy, mod acute inflammation, (-) viral inclusions
• Peripheral blood for flow cytometry: CLL without evidence of transformation
• Bone marrow biopsy: 5-10% prolymphocytes in bone marrow
• Stool O&P, fecal leukocytes, C. difficile cytotoxin assay
• Induced sputum x 3 for acid-fast bacilli

Viral Assays:
• Shell vial assay and quantitative PCR for cytomegalovirus
• Influenza A/B rapid test
• Membrane immunochromatographic assay for RSV
• DFA tests for RSV, adenovirus, influenza A/B, parainfluenza virus types 1, 2, and 3 (x 2)
• Metapneumovirus PCR
• ELISA for hantavirus (Sin Nombre)
Virochip Diagnosis Case 2

E-Predict: Human Metapneumovirus

Diagnostic Tests:
- Blood, urine, and sputum viral, bacterial, acid-fast bacilli, and fungal cultures
- Urine Legionella antigen
- Serum rheumatoid factor and anti-nuclear antibody
- Serum Cryptococcal antigen
- Histoplasma urine antigen and histoplasma buffy coat
- Coccidioidomycosis, histoplasmosis, Mycoplasma, Chlamydia Ab titers
- HIV serum antibody
- Bordetella pertussis DFA and PCR
- Immunofluorescence test for Pneumocystis jiroveci
- Serology tests for blastomycosis, tularemia, sporotrichosis, Q fever, and leptospirosis
- Cytology of bronchoalveolar lavage fluid: (-) malignancy, mod acute inflammation, (-) viral inclusions
- Peripheral blood for flow cytometry: CLL without evidence of transformation
- Bone marrow biopsy: 5-10% prolymphocytes in bone marrow
- Stool O&P, fecal leukocytes, C. difficile cytotoxin assay
- Induced sputum x 3 for acid-fast bacilli

Viral Assays:
- Shell vial assay and quantitative PCR for cytomegalovirus
- Influenza A/B rapid test
- Membrane immunochromatographic assay for RSV
- DFA tests for RSV, adenovirus, influenza A/B, parainfluenza virus types 1, 2, and 3 (x 2)

Metapneumovirus PCR

- Identification of human metapneumovirus.
- Missed by PCR due to divergent gene sequences at primer regions (therefore not amplified).
Future Directions in Viral Diagnosis

• Recent case (published yesterday) of hemorrhagic fever.
 – Patient dies.
 – Paramedic dies.
 – Nurse in ICU dies.
 – Worker who cleaned room after patient died dies.
 – Nurse who cared for paramedic survived (with ribavirin).

Lujo Virus

• Unbiased, high-throughput pyrosequencing.
• RNA samples from post-mortem liver and serum.
• 87,500 to 106,500 sequence reads produced.
• Alignment of unique singleton and contiguous sequences to the GenBank database.
• Aligned to an arenavirus scaffold.
• Filled in rest of sequence by PCR.
• 72 hrs from receipt of sample to sequencing.

Conclusions

• Viral infections are common respiratory illnesses with occasionally specific histology.
• Nonspecific histologies can be supported by use of laboratory tests including DFA, PCR, and (perhaps) Virochip.
• When you have a disease which looks like a possible viral syndrome, the Infection Control Division can activate Public Health protocols.