Mechanical Ventilation: Is there anything new?

John Taylor, MD
Department of Anesthesia and Perioperative Care
University of California, San Francisco
Introduction

“But so that life may in some measure be restored to the animal, you must attempt an opening in the trunk of the trachea and pass into it a tube of rush or reed, and you must blow into this so that the lung may expand and the animal draw breath after a fashion; for at a light breath the lung in this living animal will swell to the size of the cavity of the thorax, and the heart take strength afresh and exhibit a great variety of motions”.

Andreas Vesalius, *De humani coporis fabrica*, 1543.
Objectives

- Provide definitions
- Review accepted modes of ventilation
- Discuss alternative modes of ventilation
- Discuss adjunctive ventilation therapies
- Introduce other therapies

* Presentation is limited to Adult patients
Background

Reasons for mechanical ventilation

• Pulmonary causes = pneumonia, aspiration, inhalation injury, near drowning and pulmonary contusion

• Extra-pulmonary causes = sepsis, shock, transfusion and trauma
Definitions

• Hypoxemic Respiratory Failure

• ALI - Acute lung injury

• ARDS - Acute Respiratory Distress Syndrome
Definitions

• Hypoxemic Respiratory Failure
 - Bilateral infiltrates on CXR
 - No evidence of left atrial hypertension

• ALI - Acute lung injury

• ARDS - Acute Respiratory Distress Syndrome
Definitions

• Hypoxemic Respiratory Failure
 - Bilateral infiltrates on CXR
 - No evidence of left atrial hypertension

• ALI - Acute lung injury
 PaO₂:FiO₂ ratio < 300

• ARDS - Acute Respiratory Distress Syndrome
Definitions

• Hypoxemic Respiratory Failure
 - Bilateral infiltrates on CXR
 - No evidence of left atrial hypertension

• ALI - Acute lung injury
 \(\text{PaO}_2: \text{FiO}_2 \) ratio < 300

• ARDS - Acute Respiratory Distress Syndrome
 \(\text{PaO}_2: \text{FiO}_2 \) ratio < 200
Definitions

- **Barotrauma** = pneumothorax, etc
- **Volutrauma** = overdistention of alveoli due to large tidal volume ventilation
- **Atelectrauma** = ventilation without PEEP
- **Biotrauma** = infection resulting in alveolar permeability
- **VILI** = ventilator-induced lung injury
- **Open Lung Ventilation** = Lung-protective ventilation strategy
Current Standard of Care

The NHLBI ARDS Clinical Trials Network

http://www.ardsnet.org
Standard Modes of Ventilation

- Lung protective ventilation strategy (Low tidal volume settings)
- Protocol driven reduction in ventilatory support
- Volume control or Pressure control ventilation
Pressure-Volume Relationships

Problems Encountered

- Inadequate oxygenation
- Inability to clear CO$_2$
- Patient-ventilator asynchrony
Tactics to Improve Gas Exchange

• Positive End Expiratory Pressure (PEEP)
 – Alveolar recruitment
 – Increased functional residual capacity (FRC)
 – Redistribution of lung water
 – Improved ventilation-perfusion (V-Q) matching

• Recruitment Maneuvers
Recruitment Maneuvers

• 2 recruitment maneuvers compared in a 2008 study by Constantin et. al. in Critical Care
 – CPAP of 40 cm H₂O for 40 seconds or
 – eSigh with PEEP set at 10 cm H₂O above LIP
• Recruited volumes, PaO₂ and P:F ratios measured on each patient
• eSigh recruitment maneuvers showed increased recruited volumes compared to traditional CPAP
Recruitment Maneuvers

Both recruitment maneuvers increased oxygenation. Extended sigh (eSigh) induced a significantly higher increase in arterial partial pressure of oxygen (PaO₂) than continuous positive airway pressure (CPAP) at 5 and 60 minutes after the recruitment maneuver. * significant versus baseline, † significant versus CPAP.

Constantin et al. Critical Care 2008; 12:R5C0
Other Ventilator Strategies and Modes
Prone Position Ventilation

Benefits

• Improved gas exchange in human and animal studies
• Suggested improvements in V-Q matching
• More uniform airway pressures
• Improved secretion drainage, lower VAP
Figure 2: Effect of ventilation in the prone position on mortality. We used a random-effects model in our analysis. The duration of prone positioning was up to 24 hours for 1–2 days in the short-term trials and up to 24 hours daily for more than 2 days in the prolonged-duration trials.

Sud et al., CMAJ 2008, Apr 22;178(9):1153-61.
Problems

• Labor intensive, loss of access and airway
• Contraindicated in pts with tracheotomy
• Pressure ulcers
• No significant mortality benefit
Prone Position Ventilation

The bottom line

• Overall, no proven benefit in mortality
• No consensus on therapy implementation
• Difficult therapy to initiate
• Beneficial effects are not lasting
• Pts likely to develop more pressure ulcers
• May be beneficial as rescue therapy in patients with very low PaO$_2$
High Frequency Oscillatory Ventilation (HFOV)

- More than 20 yrs use in neonatal ICU
- Limited use in adult populations
- Basic mechanics: very rapid inspiratory rate
 \(\sim \) 3-10 cycles/sec, active exhalation phase
- Consistent elevation in mean airway pressure improves \(O_2 \) delivery
- Low peak airway pressures minimizes VILI
Mechanisms of Gas Exchange During HFOV

High Frequency Oscillatory Ventilation (HFOV)

- Provides best ‘open-lung’ model of ventilation
- No benefits, or dangers, when compared to conventional ventilator modes - Bollen 2005
- Requires highly trained personnel and specialized equipment
- Effective as rescue therapy
- More studies are needed for adult patients
Adjunctive Therapies
Inhaled Nitric Oxide (iNO)

• Potent pulmonary vasodilator, used in neonatal hypoxic pulmonary failure and treatment of pulmonary hypertension in adults
• iNO activates guanylate cyclase in ventilated portions of the lung
• cGMP causes smooth muscle relaxation
• Increased perfusion improves V-Q matching
• Result is improved PaO$_2$ with lower PIP
Inhaled Nitric Oxide (iNO)

• ~50% of ARDS pts with hypoxic respiratory failure respond to iNO
• Typical dose requirements 10 - 40 ppm
• No correlation between improved oxygenation and survival
• Often effective as rescue therapy
• Typical costs $2000 - $4000/day
Can Aerosolized Beta-2 Agonist Therapy Help in ARDS/ALI?

Possible Mechanisms of Potential Benefit:

- Accelerate the resolution of alveolar edema by upregulating the transport of Na and Cl across distal lung epithelium.
- Reduce lung vascular injury by a direct effect on endothelial junctions and by modest anti-inflammatory properties.
- Increase surfactant secretion
- Reduce peak & plateau airway pressures
Beta-2 Agonist Therapy for the Treatment of Clinical Acute Lung Injury

- Advantages: Multiple mechanisms for beneficial effects in ALI/ARDS, excellent preclinical and encouraging clinical phase II data, inexpensive, and likely to be safe in critically ill patients with ALI.

- Potential downside: mechanism of actions may not be effective because of the severity of lung epithelial or lung endothelial injury.
Clinical Trial Design: ALTA
(Albuterol Treatment in Acute Lung Injury)

• Aerosolized delivery of 5 mg albuterol or placebo q 4 hours (double blind randomized)
• Primary end point: Ventilator Free Days (> 2 days)
• Secondary end point: mortality
• Exclusions as in prior trials: chronic liver disease, chronic lung disease, < 6 month expected survival
• Anticipated enrollment of 1000 patients
• Futility and efficacy end boundaries to be reviewed by the DSMB every 300 patients
Clinical Trial Design: ALTA

- Biological markers to be measured in plasma, mini-BAL and urine.
- Patients to be analyzed in secondary outcomes for presence or absence of shock.
- Low tidal volume and plateau pressure for mechanical ventilation.
- Simplified fluid conservative protocol from ARDS network - begins when patient is out of shock for 12 hours, requires CVP (NEJM, June 2006)
Bundled Interventions
Combination Therapy

Lung protective ventilation strategies

+ Prone position ventilation

+ HFOV
Combination Therapy

Evolution of PaO₂/FIO₂ ratio. Positions were prone position followed by high-frequency oscillatory ventilation (filled circles); conventional lung-protective mechanical ventilation in the supine position followed by high-frequency oscillatory ventilation (open circles); and conventional lung-protective mechanical ventilation in the prone position followed by supine (triangles). *p < .001 vs. end-optimization and p < 0.001 vs. high-frequency oscillatory ventilation in the supine position; ‡p < .02 vs. CVsupine-HFOVsupine and CVprone-CVsupine; †p < .001 vs. end-optimization and 24 hrs

Combination Therapy

Lung protective ventilation strategies
 +
Prone position ventilation
 +
 +
HFOV
 +
iNO
Newer Modes of Ventilation

Modes designed to preserve spontaneous ventilation and promote ventilator synchrony by unloading respiratory muscles
P.A.V.

- Proportional Assist Ventilation
- Ventilator augments assistance in response to changes in lung compliance and resistance
- Goal is unloading of respiratory mechanics
- Typically set for 80% reduction in work of breathing
- Interactive mode that varies ventilatory output to maintain its proportion of the workload
Proportional Assist Ventilation (PAV)
Limitations of P.A.V.

- Over/under estimation of support ("Runaway Phenomenon")
- Unstable respiratory mechanics
- Dynamic hyperinflation
N.A.V.A.

- Neurally Adjusted Ventilatory Assistance
- Software varies applied pressure in direct proportion to the diaphragmatic EMG signal
- The goal is simultaneous ventilator and diaphragmatic breath initiation to reduce ventilator asynchrony
Summary

- Prone position ventilation
- HFOV
- iNO
- ALTA
- Combination therapies
- PAV and NAVA
Is there anything new?