Community-Acquired, Health Care Associated, and Hospital Acquired Pneumonia
Management of the Hospitalized Patient
Update 2008

Scott A. Flanders, M.D.
Associate Professor
Director, Hospitalist Program
University of Michigan
Overview

Community Acquired Pneumonia (CAP)
- Pneumonia developing outside the hospital
- But not HCAP

Healthcare Associated Pneumonia (HCAP)
- Pneumonia developing outside the hospital
- But the patient has been “touched” by the healthcare system

Hospital Acquired Pneumonia (HAP)
- Pneumonia that develops ≥ 48 hrs after admission
- Ventilator Associated Pneumonia (VAP) is a subset of HAP
CAP: Overview

COMMON
• 5-6 million cases / year
• 1 million hospitalizations / year

MORBIDITY / MORTALITY
• 64 million days of restricted activity
• High 30 day mortality: 10-35%
• Leading cause of infectious death

COSTLY
• Costs: $12-20 Billion / Year
• Inpatients: Mean $10k / episode
Community-Acquired Pneumonia

Care of the Hospitalized Patient

- Admission Decision
- Etiologic Testing
- Antibiotic Therapy
- Discharge Decision
- Prevention
Community-Acquired Pneumonia

Care of the Hospitalized Patient

• Admission Decision (Predicting ICU Care)
• Etiologic Testing
• Antibiotic Therapy
• Discharge Decision
• Prevention
SMART-COP
A tool for predicting which patients with community-acquired pneumonia (CAP) are likely to require intensive respiratory or vasopressor support (IRVS).

CAP confirmed on CXR

S Systolic BP <90 mmHg □ (2 points)
M Multilobar CXR involvement □ (1 point)
A Albumin <3.5 g/dL* □ (1 point)
R Respiratory rate – age-adjusted cut-offs □ (1 point)

<table>
<thead>
<tr>
<th>Age</th>
<th>≤50 yo</th>
<th>>50 yo</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>≥25 br/min</td>
<td>≥30 br/min</td>
</tr>
</tbody>
</table>

T Tachycardia ≥125 bpm □ (1 point)
C Confusion (new onset) □ (1 point)
O Oxygen low – age-adjusted cut-offs □ (2 points)

<table>
<thead>
<tr>
<th>Age</th>
<th>≤50 yo</th>
<th>>50 yo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO₂*</td>
<td><70 mmHg</td>
<td><60 mmHg</td>
</tr>
<tr>
<td>or: O₂ Saturation</td>
<td><93%</td>
<td><90%</td>
</tr>
<tr>
<td>or (if on O₂): PaO₂/FiO₂*</td>
<td><333</td>
<td><250</td>
</tr>
</tbody>
</table>

P Arterial pH <7.35* □ (2 points)

Total Score □ points
SMART-COP

Interpretation:

<table>
<thead>
<tr>
<th>Points</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>Low risk of needing IRVS</td>
</tr>
<tr>
<td>3 – 4</td>
<td>Moderate risk (1 in 8) of needing IRVS</td>
</tr>
<tr>
<td>5 – 6</td>
<td>High risk (1 in 3) of needing IRVS</td>
</tr>
<tr>
<td>≥7</td>
<td>Very high risk (2 in 3) of needing IRVS</td>
</tr>
</tbody>
</table>

For primary care physicians, results for albumin, arterial pH, and PaO2 can be overlooked and the following interpretation be used:

<table>
<thead>
<tr>
<th>Points</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Very low risk of needing IRVS</td>
</tr>
<tr>
<td>1</td>
<td>Low risk (1 in 20) of needing IRVS</td>
</tr>
<tr>
<td>2</td>
<td>Moderate risk (1 in 10) of needing IRVS</td>
</tr>
<tr>
<td>3</td>
<td>High risk (1 in 6) of needing IRVS</td>
</tr>
<tr>
<td>≥4</td>
<td>High risk (1 in 3) of needing IRVS</td>
</tr>
</tbody>
</table>
Admission Decision

Predicting the Need for ICU Level Care

SMART COP: Sens=92%, Spec=62%

AUC
SMART COP 0.87
PSI IV&V 0.69
CURB-65 0.67

CID 2008
Community-Acquired Pneumonia

Care of the Hospitalized Patient

- Admission Decision
- Etiologic Testing
- Antibiotic Therapy
- Discharge Decision
- Prevention
Etiologies / Diagnosis

MRSA Pneumonia: The New Nightmare

• CDC surveillance of 2003-2004 influenza season
• 17 cases identified
• 15/17 (88%) were MRSA; 85% PVL gene+
• Median age 21, 75% with no MRSA risk factors
• 82% with +sputum, 50% +bld culture
• 80% in ICU, 30% fatal
• 100% erythromycin resistant, 50% fluoro resistant
ARS #1

• How many patients with CA-MRSA pneumonia have you (or your group) treated in the past year?
 – 1) 0
 – 2) <5
 – 3) 5-10
 – 4) >10
CA-MRSA

- IDSA Emerging Infections Network Survey 2007
- 500 physicians across U.S.
- 30% treated 560 cases of *S. Aureus* CAP

<table>
<thead>
<tr>
<th>% of pts</th>
<th>Vent Support</th>
<th>Mortality</th>
<th>Assoc Influenza</th>
<th>MRSA</th>
<th>+ Sputum Cx</th>
<th>+ Blood Cx</th>
<th>Vanco Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49%</td>
<td>13%</td>
<td>26%</td>
<td>72%</td>
<td>77%</td>
<td>43%</td>
<td>73%</td>
</tr>
</tbody>
</table>

CID; 2007
CA-MRSA

• Risk factors
 – Past skin infection (abscess)
 – IVDU
 – Influenza (concurrent with flu; resp sx 2-6 d prior to ED)

• Presentation:
 – Severe, necrotizing infection
 – Hemoptysis, Leukopenia
 – High fever / cavitary infiltrate

• Treatment:
 – Vancomycin or Linezolid (NOT Daptomycin)
 – Vanco troughs 15-20 mcg / mL

Ann Emerg Med 2007
Etiologies / Diagnosis

Who has gram negative rods or pseudomonas?
(560 non-immunosuppressed pts with CAP)

<table>
<thead>
<tr>
<th>Gram negative predictors</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspiration</td>
<td>2.3 (1.02-5.2)</td>
</tr>
<tr>
<td>Prior admit*</td>
<td>3.5 (1.7-7.1)</td>
</tr>
<tr>
<td>Prior antibiotics**</td>
<td>1.9 (1.01-3.7)</td>
</tr>
<tr>
<td>Pulmonary comorbidity</td>
<td>2.8 (1.5-5.5)</td>
</tr>
</tbody>
</table>

1 of the above factors \hspace{1cm} 4.2 (1.4-16.7)
2 of the above factors \hspace{1cm} 9.1 (2.8-37.2)
3 of the above factors \hspace{1cm} 39.3 (9.3-188.3)

Pseudomonas predictors

| Pulmonary comorbidity | 5.8 (2.2-15.3) |
| Prior admit | 3.8 (1.8-8.3) |

(*48 hrs in last month, **any in past month)
Etiologies / Diagnosis

Who has pseudomonas?
(530 ICU pts from 33 hospitals with CAP)

Pseudomonas predictors	OR
COPD | 18
Malignancy | 11
Prior Antibiotics | 6
Rapid CXR spread | 4

CID 2005

- 75% of pts with pseudomonas had inappropriate rx
- Severe COPD warrants Pseudomonal rx in ICU or Ward

Restrepo, et al. CHEST 2008
Community-Acquired Pneumonia

Care of the Hospitalized Patient

- Admission Decision
- Etiologic Testing
- Antibiotic Therapy
- Discharge Decision
- Prevention
Antibiotic Therapy

Antibiotic Regimens and Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Design</th>
<th>[RX] vs. BL Mono</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleason 00’</td>
<td>13,000</td>
<td>Retrospec</td>
<td>BL+macro: HR= .74 fluoro: HR=.64</td>
</tr>
<tr>
<td>Dudas 00’</td>
<td>3000</td>
<td>Retrospec</td>
<td>BL+macro: lower 30d mortality and LOS</td>
</tr>
<tr>
<td>Houck 01’</td>
<td>10,000</td>
<td>Retrospec</td>
<td>BL+macro: lower 30d mortality</td>
</tr>
<tr>
<td>Brown 03’</td>
<td>45,000</td>
<td>Retrospec</td>
<td>BL+macro: lower 30 d mortality</td>
</tr>
<tr>
<td>Flanders 03’</td>
<td>340</td>
<td>Retrospec</td>
<td>BL+doxy: lower 30 d mortality</td>
</tr>
<tr>
<td>Morten 04’/06’</td>
<td>420/700</td>
<td>Retrospec</td>
<td>Guideline concordant rx: lower 48h mortality</td>
</tr>
</tbody>
</table>
Antibiotic Therapy
Is it the Atypical Coverage that is Important?

• Shefet D, et al. Cochrane 2005 (Updated 2008)
 – Meta-analysis of 24 RCTs; atypical coverage vs. not
 – Hospitalized patients; 11/24 “Severe Pneumonia”
 – 18/24 identified trial were pharma sponsored
 – Atypical drugs: 19 fluoro; 4 macrolide; 1 both

Atypical Coverage vs. Non-Atypical

<table>
<thead>
<tr>
<th>Outcome</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>1.1 (0.8-1.5)</td>
</tr>
<tr>
<td>Clinical failure</td>
<td>.92 (0.8-1.1)</td>
</tr>
<tr>
<td>Clinical Failure Subset</td>
<td></td>
</tr>
<tr>
<td>Atypical orgs</td>
<td>0.5 (0.2-1.1)</td>
</tr>
<tr>
<td>Legionella</td>
<td>0.2 (0.1-0.6) (only 43 cases)</td>
</tr>
</tbody>
</table>
Antibiotic Therapy

The Guidelines: Inpatient

- IDSA / ATS 2007
 - β-lactam + macrolide (or doxycycline)
 - Respiratory fluoroquinolone
 - ICU: β-lactam + macrolide, or β-lactam + fluoroquinolone
 - Anti-pseudomonal (many options) or CA-MRSA Rx (Vanco or Linezolid) if risk factors: independent of ICU status
Antibiotic Therapy

Short Course Therapy

- Blinded, multicenter, RCT
- 3 days vs. 8 days
- All centers in the Netherlands
- Adults, PSI ≤ 110; (no PSI Class V, 15% were class IV)
- Exclude: ICU, NH, Abx > 24 hr, aspiration, large effusion, or “suspicion” of Staph or Atypicals.
- All pts received IV ampicillin
- Pts randomized at 72 hrs if
 - Clinical improvement (decreased cough, etc.)
 - Temp < 38 C
 - Tolerating orals

BMJ 2006
Antibiotic Therapy

Short Course Therapy

- 186 patients; 38 no improvement, 3 resistant bug
- 121 randomized; bacteremic patients included

<table>
<thead>
<tr>
<th></th>
<th>Amox 750 tid x 5d</th>
<th>Placebo x 5d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>64</td>
<td>57</td>
</tr>
<tr>
<td>Cure (d 10)</td>
<td>93%</td>
<td>93%</td>
</tr>
<tr>
<td>Cure (d 28)</td>
<td>88%</td>
<td>90%</td>
</tr>
<tr>
<td>Adverse Event</td>
<td>21%</td>
<td>11%</td>
</tr>
</tbody>
</table>

No difference in symptom or CXR scores between groups

BMJ 2006
Antibiotic Therapy

Short Course Therapy

Am J Med, 2007; Meta-Analysis: 15 RCTs

< 7 days vs. > 7 days

Clinical Failure

OR = 0.89 (0.78-1.02)
Antibiotic Therapy

Short Course Therapy

Am J Med, 2007; Meta-Analysis: 15 RCTs

\(\leq 7 \) days vs. \(> 7 \) days

- **Mortality**
 - OR = 0.81 (0.45-1.43)

- **Adverse Events**
 - OR = 0.86 (0.71-1.04)
Antibiotic Therapy

Stopping Antibiotics

- Pts should be afebrile for 48-72 hours
- Have no more than 1 CAP-associated instability*
- Usually this is after 5 days of therapy

*HR<100
SBP>90
RR<24
Temp <37.8
O2 Sat >90
Mental status at baseline
Taking orals
Antibiotic Timing and Outcomes
13,700 Medicare Patients: 30 d mortality

Odds also lower for inpatient mortality, and LOS > 5d. No effect if antibiotics are given prior to admission

Antibiotic Timing and Outcomes

Delayed Timing and Atypical Presentation

- 450 pts with + CXR and CAP symptoms
- Mean age 60; 50% > 4 hours

<table>
<thead>
<tr>
<th>Delay</th>
<th>Early Abx (<2hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered Mental Status</td>
<td>Shock</td>
</tr>
<tr>
<td>No Hypoxia</td>
<td>T > 101</td>
</tr>
<tr>
<td>No Fever</td>
<td>Hypoxia</td>
</tr>
</tbody>
</table>

Mortality

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altered Mental Status</td>
<td>3.5</td>
</tr>
<tr>
<td>No fever</td>
<td>2.5</td>
</tr>
<tr>
<td>Abx > 4 hrs</td>
<td>1.8 (not significant)</td>
</tr>
</tbody>
</table>

CHEST 2006
Antibiotic Timing and Outcomes

Antibiotic Overuse: Gaming the System?

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED CAP dx</td>
<td>200</td>
<td>320</td>
</tr>
<tr>
<td>Abx in 4 hrs</td>
<td>54%</td>
<td>66%</td>
</tr>
<tr>
<td>Abx / pt</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>CXR is nl</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>Final CAP dx</td>
<td>76%</td>
<td>59%</td>
</tr>
</tbody>
</table>

- Many misdiagnoses were cardiac / non-CAP-pulmonary dz
- Substantial antibiotic overuse

CHEST 2007
Arch Int Med 2008
Antibiotic Timing and Outcomes

So now what?

• Change the measure
 – A 6 hr data point has been added. Based on?
 – IDSA / ATS 2007: Recommend: “Give in ED”

• Lessons re Performance Indicators
 – Caution when evidence is questionable
 – Create “bands of performance”
 – End-users (ie hospitalists / ED docs) need a voice
 – Performance indicators need constant reassessment

Wachter, Ann Intern Med 2008
Community-Acquired Pneumonia

Care of the Hospitalized Patient

- Admission Decision
- Etiologic Testing
- Antibiotic Therapy
- Discharge Decision
- Prevention
Discharge Decision

N=686 PORT Database

<table>
<thead>
<tr>
<th>Stability Criteria</th>
<th>Median Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR ≤ 100</td>
<td>2</td>
</tr>
<tr>
<td>SBP ≥ 90</td>
<td>2</td>
</tr>
<tr>
<td>RR ≤ 24</td>
<td>3</td>
</tr>
<tr>
<td>O2 sat ≥ 90%</td>
<td>3</td>
</tr>
<tr>
<td>Temp ≤ 37.8</td>
<td>3</td>
</tr>
<tr>
<td>Able to eat</td>
<td>2</td>
</tr>
<tr>
<td>Mental Status</td>
<td>3</td>
</tr>
<tr>
<td>Overall Stability</td>
<td>3 (3-7)</td>
</tr>
</tbody>
</table>

Halm E, et al. JAMA 1998;279
Discharge Decision

- RCT at 7 Pittsburgh Hospitals; guidelines to reduce LOS
- 577 patients discharged
- 70 (12%) readmitted by 30 days

<table>
<thead>
<tr>
<th>Reason for Readmission</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia related</td>
<td>14 (20)</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>52 (74)</td>
</tr>
<tr>
<td>Cardiac</td>
<td>14</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>6</td>
</tr>
<tr>
<td>Neuro</td>
<td>6</td>
</tr>
</tbody>
</table>

(No GED degree, unemployed, CAD, COPD all predicted readmits)
Community-Acquired Pneumonia

Care of the Hospitalized Patient

• Admission Decision
• Etiologic Testing
• Antibiotic Therapy
• Discharge Decision
• Prevention
Prevention

Pneumococcal Vaccine
- Is the vaccine efficacious in our hospitalized patients (age>65, medical comorbidities)?

Influenza Vaccine
- Does it prevent CAP?
ARS #2

- In hospitalized patients meeting CDC indications for vaccination, the 23-valent pneumococcal vaccine:
 - 1) Prevents pneumonia
 - 2) Prevents bacteremia
 - 3) Reduces mortality
 - 4) All of the above
Prevention

Pneumococcal Vaccine

Cochrane Systematic Review: 2008

• All RCT’s Reviewed
 – No effect on pneumonia
 – No effect on mortality

• Case-Control Studies
 – 53% efficacy for invasive disease
 – OR=0.62 (0.42-0.92) for death or ICU if hospitalized with CAP

NNT=20,000 Bacteremia
NNT=50,000 Death

ACP J-Club 2004
Moberley, Cochrane 2008

Arch Intern Med 2007
Prevention

Influenza Vaccine:

- Retrospective cohort study; 3 managed care organizations
- 2 flu seasons; 285,000 patients

<table>
<thead>
<tr>
<th>Flu Vaccine 99-00’</th>
<th>Odds Ratio (95% CI)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP or Flu</td>
<td>0.71 (0.62-0.80)</td>
<td>431</td>
</tr>
<tr>
<td>Cardiovascular dz</td>
<td>0.81 (0.73-0.89)</td>
<td>376</td>
</tr>
<tr>
<td>Cerebrovascular dz</td>
<td>0.77 (0.66-0.89)</td>
<td>621</td>
</tr>
<tr>
<td>Death</td>
<td>0.50 (0.46-0.55)</td>
<td>118</td>
</tr>
</tbody>
</table>

- Effects similar in all subgroups (by risk, and age group up to ≥ 85 yrs)

NEJM 2003
Prevention

Influenza Vaccine: 2008

- Nested case-control study; 3500 pts > 65 yrs old
- 1200 vaccinated cases; 2300 controls

<table>
<thead>
<tr>
<th></th>
<th>Pre-Influenza</th>
<th>OR for CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinated</td>
<td>0.60 (0.38-0.95)</td>
<td></td>
</tr>
<tr>
<td>Adjusted / Controlled</td>
<td>1.01 (0.58-1.76)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Post-Influenza</th>
<th>OR for CAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted / Controlled</td>
<td>1.04 (0.88-1.22)</td>
<td></td>
</tr>
</tbody>
</table>

Lancet 2008
Community-Acquired Pneumonia

No Progress Since 1988?

• National Hospital Discharge Survey; >65 y.o.

• Hospitalization rates (per 1000) for pneumonia
 – 20% increase from 1988-2002 for 65-84 y.o.
 – No change in “all-cause” hospitalizations

• Pts with comorbid disease; 77% (vs 66% in 88’)

• Risk of death in hospital
 – 50% greater for CAP than 10 next most common dx
 – AND no change from 1988-2002

JAMA 2006
Community-Acquired Pneumonia

Steroids, Statins, Cytokines, and other Ideas

• No major impact on outcomes for pneumonia
 – Diagnostic testing
 – Specific antibiotic regimens?
 – Timing of antibiotics?
 – Pneumococcal vaccination
 – Flu vaccine?

• Time to start thinking outside of the BOX
Antibiotic Therapy + Steroids?

- 46 patients from 6 hospitals with “severe CAP”: ICU
- Hydrocortisone 200mg x 1, then 10mg / hr x 7 d
- Trial stopped after 48 pts due to pre-specified criteria

<table>
<thead>
<tr>
<th>Day 8</th>
<th>Placebo</th>
<th>Steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>On vent</td>
<td>65%</td>
<td>26%</td>
</tr>
<tr>
<td>P/F improve</td>
<td>35%</td>
<td>85%</td>
</tr>
<tr>
<td>Delayed shock</td>
<td>43%</td>
<td>0%</td>
</tr>
<tr>
<td>Mortality</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Hospital Mortality</td>
<td>30%</td>
<td>0%</td>
</tr>
<tr>
<td>60d Mortality</td>
<td>35%</td>
<td>0%</td>
</tr>
<tr>
<td>Median LOS</td>
<td>21</td>
<td>13</td>
</tr>
</tbody>
</table>

*Beware: *There are “issues” with this study*

Am J Respir Crit Care 2006
<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Design</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlienger 07’</td>
<td>134,262</td>
<td>Retrospec</td>
<td>Mortality: OR= 0.47*</td>
</tr>
<tr>
<td>V. de Garde 06’</td>
<td>142,175</td>
<td>Retrospec</td>
<td>CAP: OR=0.49*</td>
</tr>
<tr>
<td>Majumdar 06’</td>
<td>3415</td>
<td>Prospec</td>
<td>Death / ICU: OR=NS</td>
</tr>
<tr>
<td>Mortensen 05’</td>
<td>787</td>
<td>Retrospec</td>
<td>Mortality: OR=0.36*</td>
</tr>
<tr>
<td>Fernandez 06’</td>
<td>438</td>
<td>Retrospec</td>
<td>ICU infection: OR=NS</td>
</tr>
<tr>
<td>Frost 07’</td>
<td>76,232</td>
<td>Retrospec</td>
<td>CAP Mortality: OR=0.60*</td>
</tr>
<tr>
<td>(Influenza Pts)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05

Pneumonia Disease Mechanisms

Balancing Inflammation

More Inflammation
Bacterial Clearance

LTB4
TNF
IL-1
TREM-1

Balancing Inflammation

PGE2
STAT3
PGI2

Less Inflammation
Bacterial Clearance
Avoid Overuse of PPIs?

- Denmark; Large Pop.-Based Database
- 7642 cases of CAP, 34,000 controls

<table>
<thead>
<tr>
<th>Pt Population</th>
<th>Risk for CAP: OR(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current PPI</td>
<td>1.5 (1.3-1.7)</td>
</tr>
<tr>
<td>Current H2RA</td>
<td>1.1 (0.8-1.3)</td>
</tr>
<tr>
<td>Recent start (<1wk)</td>
<td>5.0 (2.1-11.7)</td>
</tr>
</tbody>
</table>

- UK Study; 80,000 cases, 800,000 controls
- Recent PPI start (2d, OR=6.5; 7d OR=3.8)
- Current use; OR=1.02 (NS)
Prevention

Beware: Antipsychotics in the Elderly

- Denmark; Large Pop.-Based Database
- 22,944 elderly on antipsychotics
- 543 CAP cases; 2163 controls

<table>
<thead>
<tr>
<th>Antipsychotic Use</th>
<th>Risk for CAP: OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><8 days</td>
<td>4.3 (2.9-7.2)</td>
</tr>
<tr>
<td>8-14 days</td>
<td>2.3 (1.2-4.6)</td>
</tr>
<tr>
<td>15-30 days</td>
<td>1.8 (1.0-3.1)</td>
</tr>
<tr>
<td>>30 days / past users</td>
<td>NS</td>
</tr>
</tbody>
</table>

Risk > with atypical antipsychotics
Overview

Community Acquired Pneumonia (CAP)
• Pneumonia developing outside the hospital
• But not HCAP

Healthcare Associated Pneumonia (HCAP)
• Pneumonia developing outside the hospital
• But the patient has been “touched” by the healthcare system

Hospital Acquired Pneumonia (HAP)
• Pneumonia that develops ≥ 48 hrs after admission
• Ventilator Associated Pneumonia (VAP) is a subset of HAP
Healthcare Associated Infections

• **Home Therapy**
 – IV
 – Wound Care
 – Nursing care through health agency

• **Hospital or Dialysis Clinic in past 30 days for**
 – Dialysis / Any IV therapy

• **Hospitalized ≥ 2 days in past 90? days**

• **Nursing Home or Long-Term Care Facility**
Risk Factors for MDR Infections

- Antimicrobial rx in past 90 days
- Current hospitalization > 5 days
- High rates of resistance in community or ward
- Risk factors for HCAP
 - Home Therapy
 - Hospital or Dialysis Clinic in past 30 days
 - Hospitalized ≥ 2 days in past 90? days
 - Nursing Home or Long-Term Care Facility
- Family member with multidrug resistant pathogen
- Immunosuppressive disease or therapy

MDR = Multidrug-resistant
MDR Pathogens

- *Pseudomonas aeruginosa*
- Drug resistant gram negatives
 - ESBL producing Klebsiella
 - Enterobacter
 - Serratia
- *Acinetobacter spp.*
- MRSA

MDR = Multidrug-resistant
Etiologies
(HEALTH CARE ASSOCIATED PNEUMONIA)

- Evaluation of HCAP at 60 U.S. Hospitals; 02-03’ database
- Evaluated culture + patients only
- HCAP = NH, ECF, SNF, dialysis, hospital contact in 30 d

<table>
<thead>
<tr>
<th></th>
<th>CAP</th>
<th>HCAP</th>
<th>HAP</th>
<th>VAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>2200(50%)</td>
<td>990(20%)</td>
<td>835(20%)</td>
<td>500(10%)</td>
</tr>
<tr>
<td>Mortality%</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Organisms%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staph</td>
<td>25</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>MRSA</td>
<td>35</td>
<td>57</td>
<td>49</td>
<td>34</td>
</tr>
<tr>
<td>Pseud</td>
<td>15</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>LOS (mean d)</td>
<td>7.5</td>
<td>9</td>
<td>15</td>
<td>23</td>
</tr>
</tbody>
</table>

As of 2005 CMS excludes HCAP from CAP GL Recs

CHEST 2006
Etiologies

HEALTH CARE ASSOCIATED PNEUMONIA

Culture + CAP at an Academic Medical Center

<table>
<thead>
<tr>
<th></th>
<th>CAP</th>
<th>HCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>208 (33%)</td>
<td>431 (67%)</td>
</tr>
<tr>
<td>S. Pneumo</td>
<td>41%</td>
<td>10%</td>
</tr>
<tr>
<td>MRSA</td>
<td>12%</td>
<td>30%</td>
</tr>
<tr>
<td>Psuedomonas</td>
<td>4%</td>
<td>25%</td>
</tr>
<tr>
<td>Other GNR</td>
<td>2%</td>
<td>10%</td>
</tr>
<tr>
<td>Inapprop. RX</td>
<td>13%</td>
<td>30%</td>
</tr>
<tr>
<td>Mortality</td>
<td>9%</td>
<td>25%</td>
</tr>
</tbody>
</table>

(HCAP: 70% hospitalized in past 90 days, 20% in past 180d)

As of 2005 CMS excludes HCAP from CAP GL Recs
Antimicrobial Therapy

Treatment for Patients at Risk for MDR Organisms

- Anti-pseudomonal beta-lactam
 +
- Aminoglycoside or Fluoroquinolone
 +
- Vancomycin or Linezolid

IDSA/ATS 2005
Kollef CID 2008
ARS

When you have a patient with any one of the risk factors for HCAP do you:

- 1) Routinely treat broadly with guideline recommended antibiotics (2-3 drugs) for a full course
- 2) Routinely treat broadly with guideline recommended antibiotics (2-3 drugs) but narrow rx within 2-3 days
- 3) Usually treat more narrowly (like CAP)
- 4) What I do depends on my mood (and a little on the patient)
Nursing Home Acquired Pneumonia

Non-Severe Pneumonia

- Loeb, et al JAMA 2006
 - RCT 20 Nursing Homes; Pneumonia pathway vs. Usual care
 - 350 patients in each arm, mean age 85
 - Pathway: if po, HR <100, RR<30, SBP>90, sat > 90% then po Levo

<table>
<thead>
<tr>
<th></th>
<th>Pathway</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission</td>
<td>10%</td>
<td>20% (p=0.001)</td>
</tr>
<tr>
<td>Hosp days / pt</td>
<td>0.8</td>
<td>1.8 (p=0.004)</td>
</tr>
<tr>
<td>Mortality</td>
<td>3%</td>
<td>6% (p=0.23)</td>
</tr>
<tr>
<td>Costs / resident</td>
<td>$1200</td>
<td>$2200 (p < 0.05)</td>
</tr>
</tbody>
</table>
Nursing Home Acquired Pneumonia (NHAP)

Predictors of Drug Resistant Bacteria

• 135 nursing home patients admitted to ICU
• *Antibiotic use > 48 hrs in past 6 months*
• *Poor functional status (ADL score > 12.5)*
• Both positive: 90% MDRs
• Both negative: 0% MDRs

ADL Score: 6 components, score each
1 point=independent, 2=partial, 3=independent

El Solh CID 2004
(HCAP) NHAP Empiric Treatment

Cover for MDRs if 2 of 3 criteria met

- Severe pneumonia (ICU)
- Antibiotic use > 48 hrs in past 6 months
- Poor functional status

Kollef CID 2008
Overview

Community Acquired Pneumonia (CAP)
• Pneumonia developing outside the hospital
• But not HCAP

Healthcare Associated Pneumonia (HCAP)
• Pneumonia developing outside the hospital
• But the patient has been “touched” by the healthcare system

Hospital Acquired Pneumonia (HAP)
• Pneumonia that develops ≥ 48 hrs after admission
• Ventilator Associated Pneumonia (VAP) is a subset of HAP
Hospital Acquired Pneumonia

• HAP is defined as pneumonia developing ≥ 48 hrs after admission, while VAP is pneumonia ≥ 48 hrs after MV

• 10 cases / 1000 admits; 20 fold higher with vents

• 30-70% mortality, attributable mortality ≈ 20-30%
 – If adequately treated, attributable mortality is < 10%

• Associated with prolonged hospitalization and increased costs
 – Avg increased LOS 7-11 days
 – Avg increase in hospital charges of $40,000.
Hospital Acquired Pneumonia

• THE EXTRAPOLATED DISEASE
• HAP is amazingly understudied
• 90% of HAP recommendations come from VAP data

WHY?

• Diagnosis is elusive
• Hard to get valid etiologic organisms (sputum issue)
• Therefore hard to do robust treatment studies
Hospital Acquired Pneumonia

Approach to Care

• Etiologies
• Diagnosis
• Treatment
• Prevention
VAP Etiologies

Bronchoscopic dx in 24 studies of over 1650 cases

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>25</td>
</tr>
<tr>
<td>Staph aureus</td>
<td>20</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>15</td>
</tr>
<tr>
<td>Haemophilus spp.</td>
<td>10</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>8-12</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>8</td>
</tr>
<tr>
<td>Anaerobes</td>
<td><1%</td>
</tr>
</tbody>
</table>

Am J Respir Crit Care. 2002;165
HAP Etiologies

Hospital-wide Surveillance at UNC 2000-2003

- Pathogens isolated: 92% of VAP cases
- Pathogens isolated: 77% of HAP cases
- Bacteriology / MDR orgs similar between groups

- HAP: more MRSA, K. pneumoniae
- VAP: more P. aeruginosa, Acinetobacter
HAP: Etiologies

Early: < 5-7 days
- *S. pneumo*
- *H. flu*
- Anaerobes
- *S. aureus*(MSSA)
- EGNR

Late: >5-7 days
- EGNR
- *P. aeruginosa*
- Acinetobacter
- *S. aureus*(MRSA)
Risk Factors for MDR Infections

- Antimicrobial rx in past 90 days
- Current hospitalization > 5 days
- High rates of resistance in community or ward
- Risk factors for HCAP
 - Home Therapy
 - Hospital or Dialysis Clinic in past 30 days
 - Hospitalized ≥ 2 days in past 90? days
 - Nursing Home or Long-Term Care Facility
- Family member with multidrug resistant pathogen
- Immunosuppressive disease or therapy

MDR= Multidrug-resistant
HAP: Etiologies

Risk Factors

- **S. aureus**
 - Coma, DM, Renal Failure

- **P. aeruginosa**
 - Prolonged ICU, prior abx, steroids, structural lung dz

- **Legionella**
 - High dose steroids
HAP: Diagnosis

- The most controversial aspect of HAP
- NO GOLD STANDARD
- Many flawed studies evaluating diagnostic methods
- Multiple methods
 - Clinical: Infiltrate + fever or sputum or leukocytosis
 - CPIS: points for clinical factors
 - Endotracheal aspirate (ETA): no data on sputum analysis
 - Invasive: (BAL, PSB)
 - New Markers: procalcitonin, sTREM-1
HAP: CDC Diagnosis

• Radiologic signs:
 – 2 or more CXRs (1 if no pulm / cv dz) showing:
 – New or progressive and persistent infiltrate

• Clinical signs:
 – 1 of the following:
 – T > 38 and no other cause
 – WBC < 4 or >12
 – If age > 70, altered with no other cause
 – AND 2 of the following:
 – More sputum / Change in sputum
 – Cough, SOB, tachypnea
 – Rales or bronchial breath sounds
 – Worsening gas exchange

CDC 2004
HAP: Diagnosis

More Sensitive

+ +

CLINICAL

BRONCH (BAL / PSB)

+ +

More Specific
HAP: Diagnosis

SPUTUM

- Almost no data
- Clinical diagnosis alone is probably oversensitive
- Attempt to get a good sputum…..ETA may be better
- Perform ETA if possible and if negative, look elsewhere
 - If pt stable, safe to withhold abx if ETA cultures neg
- Prior Antibiotics
 - 25% of cultures negative after 12 hrs of new antibiotics
 - Diagnostic yield less affected by “ongoing therapy”
 - Do the diagnostic test before changing / adding antibiotics

Michaud S, et al. AJRCCM.2002
HAP: Treatment

Mortality: Early Inappropriate vs. Appropriate Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Inadequate Rx</th>
<th>Adequate Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luna</td>
<td>49</td>
<td>92%</td>
<td>37.5%</td>
</tr>
<tr>
<td>Alvarez</td>
<td>490</td>
<td>25%</td>
<td>16%*</td>
</tr>
<tr>
<td>Rello</td>
<td>85</td>
<td>63%</td>
<td>41.5%</td>
</tr>
<tr>
<td>Kollef</td>
<td>130</td>
<td>61%</td>
<td>27%</td>
</tr>
<tr>
<td>Sanchez</td>
<td>38</td>
<td>43%</td>
<td>25%</td>
</tr>
<tr>
<td>Ruiz</td>
<td>46</td>
<td>50%</td>
<td>39%</td>
</tr>
<tr>
<td>Dupont</td>
<td>111</td>
<td>61%</td>
<td>47%</td>
</tr>
</tbody>
</table>

*attributable mortality

(multiple additional studies show early inappropriate antibiotic therapy to be an independent predictor of mortality)
HAP: Treatment
The challenge

Early, appropriate treatment reduces mortality

Reduce antibiotic overuse
HAP: Treatment
The solution

• Identify low risk patients who can receive narrow therapy (they are rare)

• Reduce length / quantity of antibiotic use
HAP Treatment

Reducing Treatment Duration

- Pittsburgh VA, non-blinded RCT
- Excluded prior use of abx except surgical prophylaxis
- 58% ventilated
- Used CPIS (temp, sputum, P/F ratio, CXR, trach aspirate)
- Scores >6-7 correlate well with invasive dx of HAP
- Pts with scores > 6 were treated for NP for 10-21 days
- Pts with scores ≤ 6 were randomized:
 - Standard rx of 10-21 days score > 6 treat as HAP
 - Short course Cipro x 3 days score ≤ 6 d/c Cipro

HAP Treatment

Reducing Treatment Duration

<table>
<thead>
<tr>
<th></th>
<th>3 day therapy</th>
<th>Standard therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>CPIS>6 at 3d</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>Abx > 3 d</td>
<td>28%</td>
<td>97%</td>
</tr>
<tr>
<td>$p = 0.0001$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abx duration (mean)</td>
<td>3 (d)</td>
<td>9.8 (d)</td>
</tr>
<tr>
<td>$p = 0.001$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abx cost</td>
<td>6500</td>
<td>$16,000$</td>
</tr>
<tr>
<td>14d mortality</td>
<td>8%</td>
<td>21%</td>
</tr>
<tr>
<td>$p = 0.06$ (NS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30d mortality</td>
<td>13%</td>
<td>31%</td>
</tr>
<tr>
<td>$p = 0.04$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU LOS</td>
<td>9.4 (d)</td>
<td>14.7 (d)</td>
</tr>
<tr>
<td>$p = 0.02$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superinfection</td>
<td>14%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Note: ICU LOS: Intensive Care Unit Length of Stay.
HAP: Treatment

Reducing Treatment Duration

VAP: Randomized trial of 8 days vs. 15 days of rx

- 51 ICUs in France
- Required bronch dx with quant cultures and adequate empiric rx within 24 hrs
- Excluded early onset VAP (and a lot of others)
 - 400 enrolled out of 1200 eligible
- Repeat bronchs for any suspicion of recurrence

Chastre, et al. JAMA 2003
HAP Treatment

Reducing Treatment Duration

<table>
<thead>
<tr>
<th></th>
<th>8 days IV</th>
<th>15 days IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>197</td>
<td>204</td>
</tr>
<tr>
<td>28 day outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>19%</td>
<td>17%</td>
</tr>
<tr>
<td>-Resistant GNB</td>
<td>23%</td>
<td>30%</td>
</tr>
<tr>
<td>-MRSA</td>
<td>29%</td>
<td>24%</td>
</tr>
<tr>
<td>Abx Free Days</td>
<td>13</td>
<td>9*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+4 (3-6)</td>
</tr>
<tr>
<td>Recurrence</td>
<td>29%</td>
<td>26%</td>
</tr>
<tr>
<td>-Resistant GNB</td>
<td>41%</td>
<td>25%*</td>
</tr>
<tr>
<td>Recurrence with</td>
<td></td>
<td>+15% (4-27)</td>
</tr>
<tr>
<td>multi-resistant org</td>
<td>42%</td>
<td>62%*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p=0.04</td>
</tr>
</tbody>
</table>

Chastre, et al. JAMA 2003
HAP Treatment

General Principals

• Identify “low-risk” patients
 – Early onset (< 5 days)
 – No prior broad spectrum antibiotics
 – No recent hospitalizations
 – No clear risk for specific pathogens (i.e. structural lung dz)

• Rx consistent with ATS / IDSA guidelines
 – 3rd generation cephalosporin or
 – Beta-lactam / lactamase inhibitor or
 – Fluoroquinolone (Levo, Moxi)
HAP Treatment

General Principals

• High risk patients
 – Late onset (> 5 days)
 – HCAP + MDR risk factors
 – Prior abx / hospitalization
 – At risk for MRSA, Acinetobacter, Pseudomonas

• RX*
 – **Know your local flora!**
 – Imipenem or beta-lactam / lactamase or cefepime +
 aminoglycoside# or fluoroquinolone (#7mg / kg / day)
 – + / - Vancomycin / Linezolid

*ATS/IDSA Guidelines. Am J Respir Crit Care. 2005
HAP: Management

Suspicion
(infiltrate+F/WBC/sputum)

Start Treatment, Secretion Sampling
(Sputum, ETA?)

48-72 hrs

Clinical Suspicion AND + culture or sepsis/shock

Clinical Suspicion OR + culture

Low Suspicion AND - cultures
HAP: Management

- Clinical Suspicion AND + culture or sepsis/shock: Treat x 7 days Or until resolution
- Clinical Suspicion OR + culture
- Low Suspicion AND - cultures: Stop RX

High Clinical Suspicion

- Treat x 7 days

Low Clinical Suspicion (CPIS <6)

- Stop RX
HAP Prevention and Blood Products

Transfusion Related Immunomodulation (TRIM)

<table>
<thead>
<tr>
<th>Study</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leal-Noval 2001</td>
<td>> 4 U PRBC assoc with HAP</td>
</tr>
<tr>
<td>Shorr, 2004</td>
<td>VAP: PRBC, OR=1.9 (1.3-2.7)</td>
</tr>
<tr>
<td>Sarani, 2008</td>
<td>VAP: FFP: RR=1.97 (1.03-3.78) (not sig when PRBCs also given)</td>
</tr>
</tbody>
</table>
HAP Prevention and Blood Products

Transfusion Related Immunomodulation (TRIM)

- Causal or an association?
- Mediated by allogeneic WBCs?
- RCTs suggest no difference in infections of Allo vs. Auto?
- Most data comes from the surgical population
- Regardless;
 - Hgb targets=7-9 g/dL no worse and likely better that Hgb target=10

Crit Care Med 2006
NEJM 1999
CAP / HCAP / HAP

Key Points

• START
 – CAP: Risk stratifying for CA-MRSA, Pseudomonas and consider rx
 – CAP: Addressing comorbid illness at discharge
 – HCAP: Risk stratifying for MDR pathogens
 – HCAP: Treating those at risk with broad spectrum abx
 – HAP: Trying to get a respiratory isolate to guide rx
 – HAP: Considering narrow spectrum rx in low risk patients

• STOP
 – CAP: Routinely treating beyond 7 days
 – CAP: Trying to get antibiotics into everyone within 4 hours
 – HCAP: Treating all NHAP with broad spectrum abx
 – HAP: Broad spectrum therapy beyond 72 hrs if stable and no bad bugs
 – HAP: Routinely treating beyond 8 days
Key Points

• CONSIDER
 – CAP: SMART-COP to risk stratify for ICU admissions
 – CAP: Atypical coverage may not be adding much
 – CAP: Pneumococcal and Flu vaccine may not prevent much CAP
 – CAP: Avoiding / Stopping unnecessary PPIs, antipsychotics
 – HCAP: Outpt narrow spectrum rx for low risk patients (NHAP)
 – HAP: Avoiding blood products unless absolutely necessary
Appendix

Clinical Pulmonary Infection Score (CPIS)

- **Temperature**(°C)
 - 36.5-38.4 = 0 points
 - 38.5-38.9 = 1 point
 - ≥ 39 or ≤ 36.5 = 2 points

- **WBC**
 - ≥4000 and ≤11000 = 0
 - <4000 or >11000 = 1 point
 - ≥500 bands = +1 point

- **Tracheal Secretions**
 - Purulent = 1 point
 - Suctioned ≥14 times / 24 hrs = +1 point

- **Oxygenation** (PaO2/FiO2 ratio mmHg)
 - >240 or ARDS = 0 points
 - ≤ 240 and no ARDS = 2 points

- **CXR**
 - no infiltrate = 0 points
 - diffuse infiltrate = 1 point
 - local infiltrate = 2 points

- **Semiquant ETA** (1+, 2+, 3+)
 - no or <1+ bact = 0 points
 - >1+ pathologic bact = 1 point
 - bact seen on gram stain = +1 point

Scores >6 correlate well with BAL dx of NP.