Vitamin D deficiency: The new hidden diagnosis?

Peggy M. Cawthon
California Pacific Medical Center
Research Center

Outline

• Metabolism and biology
• Assessing vitamin D status
• Vitamin D supplementation
• Evidence for association between vitamin D and disease

Metabolism and biology

Where does vitamin D come from?

• Not really a vitamin: a prohormone
• Sources
 – Dietary:
 • two forms: vitamin D₂ (ergocalciferol) and vitamin D₃ (cholecalciferol)
 • fatty fish; fortified milk, cereal; supplements
 – Sunlight:
 • only vitamin D₃ synthesized in humans
 • Synthesis from 7-dehydrocholesterol in the skin with UVB exposure
 • Higher skin pigmentation leads to reduced synthesis of vitamin D₃

Vitamin D metabolism

Key Steps

• Vitamin D₂, D₃ converted to 25(OH)D in the liver by 25-hydroxylase
• 25(OH)D is the major circulating metabolite (not active)
• 1α-hydroxylase (1α-OHase) in kidneys converts 25(OH)D to active form, 1,25(OH)₂D
• Extrarenal production of 1,25(OH)₂D is common

Main physiologic function: regulation of calcium metabolism

• 1,25(OH)₂D acts to regulate calcium (Ca²⁺) and phosphate (HPO₄²⁻)
 – Increases calcium absorption in intestine
 – Regulates mineralization of the skeleton
 • via RANK pathway induces preosteoclasts → mature osteoclasts
 • Mature osteoclasts remove Ca²⁺ and HPO₄²⁻ from bone to maintain Ca²⁺ and HPO₄²⁻ blood levels
 • Adequate Ca²⁺ and HPO₄²⁻ blood levels promote mineralization of the skeleton
 – PTH can stimulate the activity of 1α-OHase; 1,25(OH)₂D can lower PTH levels

A word about PTH

• Trend toward higher PTH levels with lower 25(OH)D
• 25(OH)D level at which PTH levels stabilize is suggested to be “optimal” or “sufficient” level
 – Estimates range from 10 ng/ml to 30 ng/ml and higher

Non-skeletal vitamin D metabolism

• 10 tissues express 1α-OHase:
 – Osteoclasts, skin, macrophages, placenta, colon, brain, prostate, endothelium, parathyroid glands
• 37 tissues express vitamin D receptor (VDR):
 – Adipose, adrenal, bone, bone marrow, brain, breast, cancer cells, cartilage, colon, hair follicle, intestine, kidney, lung, lymphocytes …
Assessment of vitamin D status

- Conventional measurement in ng/ml
 - SI units are nmol/l
 - To convert ng/ml to nmol/l, multiply by 2.5
- Vitamin D status is assessed by measuring \(25(OH)D\) in the serum
 - Only use \(25(OH)D\) to assess status!
 - \(25(OH)D = 25(OH)D_2 + 25(OH)D_3\)
 - Study reported that 25% of health care providers may incorrectly use \(25(OH)D_2\) or \(25(OH)D_3\) levels to identify and treat "deficiency"

Assay problems for 25(OH)D?

- Most common methods
 - Antibody based-assays (DiaSorin)
 - LC/MS (Gold standard; Quest, research labs)
- In early 2009, lab reported problems with assays for previous ~2 years
 - Quest Diagnostics had erroneously high readings from LC/MS
- Standard reference material is becoming available
 - National Institute of Standards and Technology and the Office of Dietary Supplements plan to make this available to laboratories sometime in 2009

Prevalence of vitamin D deficiency

- Geographical variation in 25(OH)D
 - Generally higher latitudes have lower 25(OH)D levels, especially in winter
 - Can be offset by fatty fish consumption (Scandinavia)
- Seasonal variation in 25(OH)D
 - At higher latitudes, decrease in 25(OH)D during winter
 - Boston: No vitamin D₃ synthesis Nov – Feb
 - Edmonton: No vitamin D₃ synthesis Oct - Mar

Serum concentrations of 25(OH)D in the United States

- NHANES 2000-2004: Adjusted mean serum level
 - Southern latitudes (35 °N) collected Nov – March; Northern latitudes (35 °N) April–Oct

Causes of vitamin D deficiency

- Reduced skin synthesis
 - Sunscreen use, skin pigment, aging
- Decreased bioavailability
 - Malabsorption, obesity (sequestration of vitamin D in fat)
- Decreased synthesis of 25(OH)D
 - Liver failure, mild to moderate liver dysfunction
- Decreased synthesis of 1,25(OH)₂D
 - Chronic kidney disease
Vitamin D supplementation

Current Dietary Reference Intakes

- Only Adequate Intakes have been established for vitamin D
 - 1 ug = 40 IU
 - Assumes no sunlight exposure
 - No special recommendations for pregnancy, lactation
 - Tolerable upper limit
 - Birth – 1 year: 1000 IU/day; > 1 year: 2000 IU/day

<table>
<thead>
<tr>
<th>Age</th>
<th>Adequate Intakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth – 50 years</td>
<td>200 IU/day</td>
</tr>
<tr>
<td>51 – 70 years</td>
<td>400 IU/day</td>
</tr>
<tr>
<td>71+ years</td>
<td>600 IU/day</td>
</tr>
</tbody>
</table>

Adequate intakes used when insufficient evidence to establish an RDA. Level assumed to ensure nutritional adequacy.

Highest safe dose of vitamin D?

- Sun exposure does not lead to toxicity
 - Only through supplements, over-fortification of foods
- No systematic studies to establish toxic levels, mostly case series

Vitamin D toxicity: outbreak

- Outbreak of hypercalcemia due to over-fortification of milk
 - Boston area home-delivery dairy bought 30-35 times vitamin D needed to supplement milk
 - 11,000 households exposed
 - 41 hospitalizations and 2 deaths due to hypercalcemic state
 - Average 25(OH)D level: 224 ng/ml in cases
 - Age strong risk factor for hypervitaminosis D: decline in renal function?

Vitamin D toxicity

- Women’s Health Initiative: calcium (1 g/day) + vitamin D (400 IU/day)
 - 17% increased risk of kidney stones over 7 years
 - Prevalence of stones 2.4% in txt group vs. 2.1% in placebo
- Toxic level?
 - Serum 25(OH)D concentration consistently >200 ng/mL
 - Some suggest as high as 300 ng/mL

Highest safe dose of Vitamin D?

Data suggests 10,000 IU/day may be safe

- Circles: mean values from studies without toxic levels
- X’s: single values from people reported to be intoxicated with vitamin D
- Arrow: lowest dose reported as causing hypercalcemia

High dose (>~1500 IU/day) vitamin D has not be evaluated for safety or harm in a large RCT

Supplements: vitamin D₂ or vitamin D₃ better?

- Considerable controversy about this topic!
 - Some studies suggest vitamin D₂ is about one-third as effective in raising 25(OH)D levels than vitamin D₃ (Armas 2004, Trang 1998)
 - AHRQ report suggests D₃ more effective than D₂
 - Others suggest vitamin D₂ and vitamin D₃ are equally effective (Holick 2008)
- Most over the counter supplements contain vitamin D₃; vitamin D₃ not approved as a pharmaceutical agent in the U.S.
- Prescription for 50,000 IU is for vitamin D₂
High dose vitamin D3: coming to a computer near you …

Daily or monthly?

- Daily adherence may be poor …
- Long half life of 25(OH)D (~3 weeks)
- Provides opportunity other dosing schedules

Daily or monthly?

- New Zealand study: three groups receiving vitamin D₃
 - 500,000 IU loading dose
 - Loading dose + 50,000 IU/month
 - 50,000 IU/month
- All three groups had increased 25(OH)D
- When the levels in each group reached a plateau …
 - The loading dose + 50,000 IU/month had the highest levels (36 ng/ml)
 - The loading dose alone group had the lowest levels (28 ng/ml)
 - The monthly dose had intermediate levels (32 ng/ml)
- Safety: no significant increase in serum calcium

Relation between vitamin D and disease

Bacon CJ et al. Osteoporos Int. 2008 In Press
Rickets and osteomalacia

- Both conditions are the result of defective mineralization of the bone
- 25(OH)D level below which disease occurs is unclear
- Children:
 - Exclusively breast-fed infants with dark skin and no sun exposure born to vitamin D deficient mothers are at high risk
- Adults:
 - Institutionalized elderly with no sun exposure and those without exposure to supplemented foods (lactose intolerant) are at high risk

A cautionary tale …

- Beta-carotene
 - Serum levels of beta carotene associated with reduced risk of cancer
 - Biological explanations found (antioxidant “radical trapping”)
 - Randomized trial
 - 22,000 participants
 - NO differences in mortality, cardiovascular disease, cancer

Another cautionary tale …

- Selenium and Vitamin E
 - Secondary analyses of previous RCTs suggested a beneficial effect of both selenium, vitamin E for prostate cancer
 - SELECT study
 - Randomized controlled trial
 - 200 ug/day selenium, 400 IU/day vitamin E
 - 35,533 men, $121 million
 - NO differences in prostate cancer

More reasons to be cautious …

- Multivitamins and cancer, death in women (observational WHI study)
 - No association
- Vitamin C and cancer in men (Physician’s Health Study II)
 - No association
- Folate and prostate cancer in men (Aspirin/Folate Polyp Prevention Study)
 - More incidence in treatment group
Osteoporosis, Falls and Fracture

- Probably the most researched area
- Mostly focused on older adults (>65 years)
 - Observational studies
 - Low 25(OH)D associated with increased falls (fair evidence)
 - Positive association, 25(OH)D and BMD (fair evidence)

Meta-analyses for vitamin D supplementation and fracture

- Mixed results from meta-analyses
 - Analyses that do not incorporate adherence generally do not see an association between supplementation and reduce fracture risk
 - Analyses that incorporate adherence generally see a risk reduction of about 20% for non-vertebral and hip fractures
- Summary: dose needed is probably >>400 IU/day
 - Large RCT with good adherence and little loss to follow-up is needed

Osteoporosis, Falls and Fracture

 - Randomized trials
 - Vitamin D3 and calcium: small increases in BMD
 - Inconsistent evidence: Vitamin D supplementation and fractures and falls
 - Limitations of studies: poor compliance, incomplete assessment of 25(OH)D status; large loss to follow-up
 - Little evidence from randomized trials that vitamin D above current reference intakes is harmful

Cardiovascular disease

- Coronary angiography patients
 - 3,299 patients followed for 7.7 years
 - 25(OH)D deficiency (<10 ng/ml) vs. higher levels (>30 ng/ml)
 - 3x higher risk of heart failure death
 - 5x higher risk of sudden cardiac death
- Health Professionals Follow-Up Study
 - 454 MI and fatal coronary heart disease, 900 matched controls, all men
 - Deficient (<15 ng/ml) were 2.4 times more likely to have an MI than those who were sufficient (>30 ng/ml)

Cancer

• Strongest evidence for vitamin D and prevention of colorectal cancer
 – Meta-analysis: 25(OH)D concentrations >32.8 ng/ml had 50% lower incidence, compared to those with ≤12 ng/ml
• Secondary analysis of RCT: vitamin D plus calcium supplementation reduced cancer incidence (all types) by > 75%
 – Nebraska, 1179 community dwelling women

Cancer

• Limited support for other cancer types
• Suggestion of an association between higher 25(OH)D levels and increased risk of pancreatic cancer
 – Finnish smokers: 3-fold increased risk of pancreatic cancer, highest (>26.2 ng/ml) vs. lowest (<12.8 ng/ml) 25(OH)D levels
 – Results not confirmed in subsequent study: only seen in people with low UVB exposure

Overall mortality

• NHANES III data
 – Recruited 1988-1994, followed for 8.7 years (median)
 – 13,331 participants, 1806 deaths
 – 26% increased risk of mortality for those in the lowest (<17.8 ng/ml) vs. the highest (>32 ng/ml) quartile of 25(OH)D
• Meta-analysis of RCTs with mortality data: 7% reduced risk of all-cause mortality
 – Death was secondary endpoint, cause of death not determined
 – Doses ranged from 300 IU to 2000 IU/day
• WHI Randomized trial
 – Vitamin D3 (400 IU) + calcium (1 g/day) vs. placebo
 – No effect of supplementation of total mortality in 36,282

Auer and Gandra, Arch Intern Med. 2007;167(16):1730-1737
Mohamed et al. Arch Intern Med. 2006;166(15):1629-1637

Other diseases

• Osteoarthritis
• Schizophrenia
• Depression
• Lung Function
• Autoimmune diseases (MS)
• Diabetes
• Peridontal disease
• Athletic performance
• Infectious disease/TB
Other populations

• Infants and young children
 – Vitamin D deficiency occurs in breastfed infants with high levels of skin pigmentation, no vitamin D supplementation and little sun exposure
 – Functional outcomes of vitamin D inadequacy (aside from frank disease) is not well studied in this age group

• Adolescents
 – Key time period for bone development
 – 25(OH)D level for optimal bone health unknown in this age group
 – U.K. study found that 25(OH)D positively related to muscle strength and jumping

Summary

• Vitamin D likely to have multiple effects
 – VDR, 1α-OHase found in many tissues

• Use total 25(OH)D for vitamin D status
 – Consider supplementation for those below 20 ng/ml; certainly for those below 10 ng/ml

• Levels up to 10,000 IU/day may be safe, BUT …
 – Robust data from large RCTs of higher dose vitamin D supplementation is lacking
 – Data suggest 1500 IU/day is needed for “sufficiency”
 – Monthly dosing of vitamin D₃ may also be effective

Summary

• Vitamin D and health outcomes
 – Fracture prevention
 • Most studied outcome: suggestion of a benefit for supplementation above 400 IU/day
 • Results have been inconsistent to date
 – Limited randomized trial data for higher doses of vitamin D (>1000 IU/day)
 – Additional RCTs with good adherence and little loss to follow-up are needed