Current Surgical Treatment Strategies for the Management of Pediatric Epilepsy

Kurtis Ian Auguste, M.D.
May 22, 2009

University of California, San Francisco
Department of Neurological Surgery
San Francisco, California

Children's Neurosurgical Associates
Children's Hospital & Research Center
Oakland, California

Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

The Epilepsy Team

- Pediatric Neurosurgery
- Pediatric Neurology
- Neuroradiology
- Neurophysiology
- Neuropathology
- Neuropsychology

Pre-Surgical Work-up: ‘Noninvasive’ Monitoring/Imaging

- CT
- *MRI/MRI
- EEG
- Video EEG
- PET: interictal 18FDG hypometabolism
- SPECT: ictal hyperperfusion
- *MEG: sz → magnetic dipoles
- WADA: language dominance testing via intraarterial amytal
Pre-Surgical Work-up: ‘Noninvasive’ Monitoring/Imaging

- CT
- *MRI/fMRI
- EEG
- Video EEG
- PET
- SPECT: ictal hyperperfusion
- *MEG
- (WADA: language dominance)

Functional MRI

Intraoperative Neuronavigation

Utility of Neuronavigation to Treat Epilepsy Caused by Tumors
Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Temporal Lobe Epilepsy

- Temporal lobe, amygdalohippocampal complex highly sensitive to injury, susceptible to seizure
- ~30% of pediatric complex partial seizures
- ~30% of TL seizures controlled with meds
- Only half of remaining pts lived independently
- Risks to psychosocial development, isolation
- Depressed IQ scoring over time
- Cumulative toxicity of anticonvulsants

Temporal Lobectomy: Outcomes

- >75%: ↓or no sz
- <5-10%: no improvement
- Behavior, function, neuropsych testing improved
- Best outcomes with surgery before adolescence, shorter interval from onset to surgery
- Histopathology:
 1. Cortical dysplasia: structural anomaly
 2. Lesional epilepsy: neoplasm
 3. Mesial temporal sclerosis: neuronal loss & gliosis
Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Lesional Epilepsy

- Complete resection of lesion AND electrographically abnormal region
- 92% have ‘good’ outcome (sz free or >90% reduction)
- Electrographically abnormal region
 - Electrocorticography (intraoperative)
 - Chronic subdural grid recordings (extraoperative)

Electrocorticography
Invasive Subdural Grid, Strip and Depth Electrode Monitoring

Surgery for Pediatric Epilepsy: The Arsenal
- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Subdural Grids for Extraoperative Mapping

Functional mapping
- Goal: localize eloquent cortex
- Motor and language function
- Deliver escalating currents to subdural grid
 - After-discharges on EEG
 - Interruption of function
Seizure Mapping

- Goal: 1-2 “typical” seizures/day
- AED wean: depending on sz freq
- Site of sz onset is most important

Non-lesional epilepsy

- Subdural grid/strips mandatory
- At 2 year follow-up
 - 44% seizure free
 - 15% >90% reduction
 - 17% >50% reduction
- 10 year follow-up
 - 33% seizure free

Complications

- 112 children
- mean monitoring time 7.1 days (2-21)
- Add'l electrode placement 5.7%
- Wound infection 2.4%
- CSF leak 1.6%
- 1 case each
 - SDH, symptomatic pneumocephalus, bone flap osteo, strip fracture requiring retrieval.
- No permanent deficit or death

(Jayakar, P et.al., Epilepsia 2008 49(5) 758-64)

Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Multiple Subpial Transections (MSTs)

- 30 patients (1996-2000)
- 18 females; 12 males
- Minimum 2 year follow up
- Average age: 11.7 years (std dev 4.5 years)
- 46% Engel class I
- All patients experienced transient hemiparesis
- Resolved within 6 weeks

MST Outcomes

- Long term control?
- Relapses reported
- May create longterm, permanent deficits
- ICH
- Stroke
- Hemosiderin scarring

Limitations of MSTs
Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Corpus Callosotomy: Outcomes

- Literature overall: 10-100% improvement in freq.
- 10-50%: partial seizures (Black, 1992; Spencer, 1993)
- 80-100%: drop attacks (Black, 1992; Spencer, 1993)
- Sz control: complete > anterior 2/3 callosotomy
- *pre-op, baseline EEG not predictive of success
- Callosotomy can ‘uncover’ foci (Clarke, 2007)
- 88% of families would recommend (Gilliam, 1996)
 - Seizure control
 - Alertnaess
 - Responsiveness

Corpus Callosotomy: Complications

- “Split-brain Syndrome”: L/R dyscoordination
- “Disconnection Syndrome”
 - Mutism
 - Left arm/leg apraxia
 - Inattention
 - Incontinence
- Postcallosotomy Dysphasia
- Memory deficits
- Increase in seizures: generalized → partial
Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- "Lesional" epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- **Hemispherectomy**
- Vagus Nerve Stimulation (VNS)

Hemispherectomy

Indications

Large hemispheric processes:
- Developmental abnormality
 - Hemimegalencephaly
 - Sturge-Weber Syndrome
- Acquired abnormality
 - Neonatal/perinatal stroke
 - Post-traumatic injury
- Progressive abnormality
 - Chronic (Rasmussen’s) encephalitis

*Medically-refractory
*Hemisphere effectively ‘removed’ by pathology

Hemispherectomy: Outcomes

Overall: >80% pts have >75% reduction in seizure frequency

(Devlin, 2003)
Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- “Lesional” epilepsy surgery
- “Non-lesional” epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

Vagus Nerve Stimulation

- For medically-refractory epilepsy patients
- Exact mechanism unknown
- Disruption of hypersynchronous brain activity (Henry, 2002)
- Vagus \leftarrow brainstem (medulla, N.tractus solitarius) \leftarrow bilateral cerebral cortex, limbic system
- *action typically *interictal*, not during seizure activity
- Percutaneous programming
- Battery life: ~10 years

Vagus Nerve Stimulation: Side Effects

- Headache
- Cough
- Hoarseness
- Bradycardia
- Shortness of breath
- Vocal cord paralysis
- Horner’s Syndrome
- Lower facial muscle paresis/paresthesias
- Cardiac arrest

Vagus Nerve Stimulation: Outcomes

(Benifla, 2006): 41 children, mean F/U 31 months
- 38% with $\geq 90\%$ reduction in seizures
- 24% with 50-90% reduction in seizures
- 38% with $<50\%$ reduction in seizures

(Rossignol, 2008): 28 children followed 2 years
- 68% seizure decrease $\geq 50\%$
- 14% seizure-free
- 68% transient adverse events

Surgery for Pediatric Epilepsy: The Arsenal

- Temporal Lobectomy
- "Lesional" epilepsy surgery
- "Non-lesional" epilepsy surgery
- Multiple Subpial Transections (MST)
- Corpus Callosotomy
- Hemispherectomy
- Vagus Nerve Stimulation (VNS)

The Horizon: Advanced Imaging

- Cluster
 - ≥20 spike sources within a 1 cm
- Small Cluster
- Scatter
 - spike source distance >1 cm
 - <6 spikes
 - No spike source

Characterizing Magnetic Spike Source with MEG-guided Neuronavigation in Pediatric Epilepsy Surgery

- Resection of MEG spike clusters may correlate with seizure outcome
The Horizon: Cerebral Cooling

- Rationale: Focal cooling suppresses seizure activity
- Peltier thermoelectric device: semiconductors, ceramic plates
- Heat transfer with passage of current
- Seizure suppression in epileptic rats

(Yang et al. Epilepsia 2002 & Ann Neurol 2001)

The Horizon: Neuropace

- Neuropace Inc.: Design of implantable brain stimulators
- eRNS: external Responsive Neurostimulator System

(Bergey et al. Epilepsia 2003)

Thank you.