Developing Auditory-Perceptual Judgment Reliability in Otolaryngology Residents

Stephanie Misono¹
Albert L Merati¹
Tanya Eadie²
University of Washington, Seattle
¹Department of Otolaryngology/Head and Neck Surgery
²Department of Speech and Hearing Sciences

Introduction

• Auditory-perceptual methods are a vital component of voice evaluation
• Subject to error and variability¹
• Various methods (e.g., listener training with feedback; anchor samples) have been used to improve reliability of voice quality ratings²,³

¹Kreiman et al., 1993; ²Eadie & Baylor, 2006; ³Chan & Yiu, 2006

Rationale for Study

• Effect of educational background and/or experience with dysphonia on reliability of judgments remains unclear
• Unknown reliability of judgments of dysphonia by otolaryngology residents
• Impact of listener training in residents also unknown
Purpose

To determine the effect of typical otolaryngology residency training and background on judgments of dysphonia

Experimental Questions

1. Are there differences in the reliability of judgments of dysphonia when judgments are made by otolaryngology residents and naive listeners?

2. What is the effect of a brief training module on the reliability of resident listeners’ judgments of dysphonia?

Methods: Part I

Voice samples:
- 24 recordings from individuals with a variety of laryngeal–based voice disorders
- Continuum of severity for dimensions of breathiness and roughness

Source: Voice Disorders Database (Kay Elemetrics, 1994)

Participants:
- 15 otolaryngology residents at UWMC
- 15 naive listeners
Participant Demographics: Part I

<table>
<thead>
<tr>
<th></th>
<th>Residents</th>
<th>Naive Listeners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>11 M, 4 F</td>
<td>6 M, 9 F</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>30.7 yrs (2.1 yrs)</td>
<td>25.3 yrs (8.8 yrs)</td>
</tr>
<tr>
<td>Laryngology exp.</td>
<td>1–54 months</td>
<td>None</td>
</tr>
<tr>
<td>Total</td>
<td>n=15</td>
<td>n=15</td>
</tr>
</tbody>
</table>

Data Collection: Part I

• Listeners familiarized with rating scales; definitions of roughness and breathiness (CAPE-V; ASHA, 2002)

• Listened to speech sample through headphones; judged for roughness and breathiness on 10 cm visual analog scale

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
</table>

• 6 stimuli repeated per dimension to calculate intrarater reliability
Data Analysis: Part I

- Dependent variables: Intrarater and interrater agreement
- "Agreement": +/- 1 cm on 10 cm VAS
- 2 independent t-tests for each dimension to determine differences between resident and naive listener groups

Results: Part I

- Weak correlation between years of otolaryngology training and reliability of listener judgments (largest $r = 0.29$)
- Educational background alone does not differentiate among residents
- Will brief training module improve judgments in this group?

Methods: Part II

- Training module
 - 20 training items:
 - 18 dysphonic, 2 normal voices
 - Residents rated speech samples for roughness and breathiness
 - Immediate expert feedback on same stimuli (averaged from 3 SLPs; 11 yrs avg voice experience)
- Post-training test
Data Analysis: Part II

• Dependent measures:
 – Intrarater agreement
 – Interrater agreement
 – Consistency with experienced listeners
• 3 matched pair t-tests per dimension to determine differences pre- to post-training

Results: Part II

Pre vs Post-Training

Results: Part II
Consistency with Experts

Conclusions: Part I

• Otolaryngology residents had better interrater agreement for judgments of breathiness and roughness than naive listeners
Conclusions: Part I

• Otolaryngology residents had better interrater agreement for judgments of breathiness and roughness than naive listeners
• Weak relationship between educational level (in residency program) and reliability

Conclusions: Part II

• Improvement was greater for rating of breathiness, but not roughness

• Breathiness has stronger acoustic correlates (Hillenbrand & Houde, 1996)
Conclusions: Part II

• Improvement was greater for rating of breathiness, but not roughness
• Breathiness has stronger acoustic correlates (Hillenbrand & Houde, 1996)
• Limitations:
 – No control group
 – Short time for training

• Future implications: Standardized training in evaluation of dysphonia

Acknowledgments

• Tanya Eadie, Ph.D. CCC-SLP
• Albert L. Merati, MD FACS
• Amanda Politzer, BA
• Derek Wright, BS
• Participants

Questions