Micronutrient Deficiencies: Historical Oddity or Today’s Reality?

Nancy F. Krebs, MD, MS
Dept of Pediatrics
University of Colorado Denver
The Children's Hospital

Objectives

At the end of this session, attendees will be able to...
- State definitions of micronutrients (MN) & name/describe deficiency syndromes of 6 MN;
- Recognize presentations that suggest possibility of MN deficiency;
- Categorize signs/symptoms w/ MN deficiencies (Table)

Micronutrients

- Micronutrients are essential nutrients that are not used for energy, as are the macronutrients
- Vitamins ≠ minerals
 (So don't call Fe & Zn "vitamins"!)
- All have specific metabolic functions, but several overlap w/ each other;
 Deficiency signs often non-specific. 😞

~ Common MN Deficiencies

- Iron
- Zinc
- Vitamin D
- Fat soluble vitamins (A,D,E,K)
- Vitamin C
- Thiamine (B₁)
- Vitamin B₁₂
- (Vitamin A + Iodine - global)

Chapters on Micronutrients.....

Pediatric Nutrition Handbook
NUTRITION IN PEDIATRICS 4

are boring!!!!
When to consider MN deficiencies...

Know who’s at risk

Medical conditions that should prompt a full nutrition assessment (textbook):
- Ex-premature infant
- Ill newborn
- Critically ill patient
- Pt receiving home nutrition support
- Necrotizing enterocolitis
- Short bowel syndrome
- Inflammatory bowel disease
- GI pseudo-obstruction
- Chronic diarrhea
- Liver disease
- Organ or bone marrow transplantation
- Diabetes mellitus
- BPD
- Cancer
- Inborn errors
- Cystic fibrosis

Or….

When to consider MN deficiencies...

Know who’s at risk

- Restricted diet: ↓ variety, 1° inadequate / imbalanced food intake
- Increased requirements
 - physiologic (age, growth, prematurity)
 - metabolic stress (e.g. obesity, healing)
- Increased losses
 - malnutrition, malabsorption
- Unusual exam (or lab) findings

Nutrition Assessment:

Key Elements

GROWTH

AGE

DIET

P.E.

LABS

Nutrition Assessment

If diet & growth status are so important, why do we do such a lousy job with them? *

- Diet: “Appropriate for age”
 - Code for: “don’t know / didn’t ask / don’t care”
- Anthropometry
 - Not done (esp lengths / heights)
 - Not done in timely fashion (admit, repeats)
 - Not done accurately

“Good history and exam are the most important & cheapest things we can do for patients’ diagnosis & care.” (PL-2 to NFK!)

Diet: Minimum Info

- Infants:
 - Breastfed
 - Formula fed
 - Standard infant formula?
 - Non-standard – alternative or specialized?
- Older infant & Child:
 - Variety – all food groups? If not, which not?
 - Oral or GT? (ad lib vs Rx)
 - (More essential info dependent on situation & growth)

Iron & Zinc
Iron Deficiency

Who?
- LBW/premature
- BFI - ????
- Denver: 36% ID, 20% IDA (Krebs, 2006)
- NHANES 02: EBF vs EBF - anemia, ferritin
- Toddlers - (NHANES’02: 9.2% ID, 2.34% IDA; 20-25% in small series)

Why?
- Human milk low (always); infant endowment at birth critical
- Diets: low Fe fortified cereal, high cow milk, low meat

Iron Deficiency in 1-3 yr olds
(NYC, n = 504)

Toddlers – (NHANES’02: 9.2% ID, 2.34% IDA; 20-25% in small series)

Iron Deficiency: Consequences

Anemia = late effect
- rbc=priority tissue, so ID already in other tissues
- Poor predictor of ID (b/c ID less common now)

Iron deficiency w/o anemia
- Child development & behavior
- > 40 studies document effects on neurodevelopmental outcomes
- Motor & mental
- Developmental effects in early childhood likely irreversible

Behavioral Outcomes: Linear effects of iron status
(Lozoff, J Peds, 2008)

Orientation-engagement: + affect, energy, interest in test materials, exploration, social engagement; Shyness (l latency to become engaged w/ examiner) + scores = + hesitancy/wariness

Assessment of Iron Deficiency

Early:
- ↓ [Fe], ↓%sat’n
- ↓ Ferritin

Middle:
- ↑ TReceptors,
- ↑ TIBC, ↓ sat’n

Mod Late:
- ↓ ZPP, ↓MCV,
- ↓MCHC, ↑ RDW

Late:
- ↓ [Hb]

Anemia is late & severe Fe deficiency
Iron deficiency: ≥ abnormal lab indices

Comparison of Weaning Foods: Fe, Zn, Protein (per 100 kcal)
What Do 7-11 mo Infants in the U.S. Eat? (% of infants eating ≥ 1x/d)

- 20-26% breastfed
- Protein foods: mixed dishes (starch + prot) more common than plain meats (↓↓ Zn & Fe)
- Poultry > beef, pork
- Desserts & candy:
 - 40% at 7-8 mo
 - 54% at 9-11 mo

[Fox et al, JADA, '04]

Zinc Deficiency

- Who?
 - LBW/premature
 - BFI - ??? (Denver: 36% low plasma Zn)
- Why?
 - Human milk low by ~ 6 mo;
 - Diets: Fe fortified cereal ± Zn, low meat

Sources of Fe Intake among BFI

At 6 mo of age, U.S. breastfed infants, 58% of mixed fed (BF/FF) & 70% of EBF had

- < 2 svg infant cereal, meat or formula combined and
- No oral Fe supplements ≥ 3d/wk

[Dee DL, Pediatrics, 2008(supp)]

Which Infant is Zinc Deficient?

- 7 mo EBF, severe Zn deficiency, mammary gland defect in Zn secretion
- 7 mo EBF, poor intake, poor growth, mild-mod Zn deficiency

Effects of Zinc Deficiency

- Mild:
 - Growth faltering (linear & ponderal)
 - Loss of appetite
 - Impaired neurocognitive development
 - Impaired immune function
 - [normal serum Zn]
- Moderate to severe
 - All of the above + low serum Zn, dermatitis, diarrhea, ↓ hedonic tone
5 mo presented with h/o diarrhea, growth failure, rash

Severe Zn Deficiency
(acquired Acrodermatitis Enteropathica)

12 mo old infant, slow growth
- Healthy except slow growth
- Breastfed, no formula
- Complementary foods started at 6 mo
 - “Purees” + finger foods
 - Not interested in eating
- Normal exam
- Impression?

NFK Approach
- Check Fe, start Zn
 - Iron panel (TIBC, % saturation, Fe), ferritin, ESR/CRP, CBC** (≥ 2 abnl = ID)
 - Zn: 1 mg/kg/day, liquid suspension (Rx)
 (give at mid-day, ideally apart from food)**
 - Encourage meat!
 - ** Rx Fe deficiency: 2-6 mg Fe/kg/d ÷ BID (a.m. & p.m.) [OTC drops]

Vitamins
- Vitamin D - AAP recommends...
 - ALL breastfed infants, 400 IU/d, starting w/in first few days of life (until 1 L/day formula)
 - Highest risk:
 - Maternal deficiency
 - Darkly pigmented skin
 - Those who avoid sunlight/use sunscreen
 - (30 min/wk in diaper, 2 hr/wk clothed w/o hat)
 - Fat malabsorption
 - Obese children
 - Assess: Ca, P, Alk Phos; 25-OH-Vit D levels, ± PTH; exam, X-ray

7 mo female infant, “FTT” & developmental delays
- Diet: EBF; minimal solids. Mom + prenatal vitamins, no diet restrictions
- Birth Hx: Born at term, no neonatal complications.
- Hosp & Surg: Ladd’s procedure for malrotation at 4 mo (; no resection!!)
- Development: Initially met developmental milestones, but at ~ 4-5 mo, began to gradually lose milestones. At time of admission, unable to hold head up, not pushing up with arms in prone position; not rolling over.
- Medications: None; Supplements: None; SHx: non-contrib
- Anthrop: Length-for-age: < 5th%. Weight for age: < 5th %
- Exam: (positive findings only)
- General: Well developed infant, alert but fussy
- Skin: Diffuse erythematous rash on extremities (worse on legs) and diaper area; no bruises..
- Neuro: Alert; responsive to parents’ voices; hypotonic, very poor head control; areflexic; nearly constant tremors of tongue, extremities; trembling could be stopped with pressure (therefore, motor activity not consistent with seizures).
- Labs: Normal lytes, BUN & creat, LFT’s; CBC: Hb/Hct=9.5/29%; MCV 110 (↑); Stool exam: (+) for fat malabsorption
C.S. – 4 mo

- Normal development x 4 mo
- Growth faltering
- Progressive developmental delays (ie, loss of milestones)

C.S. – 7 mo, admitted for “Failure to Thrive”

- No head control, no reflexes, near constant tremors tongue & extremities

C.S. – at 2 yr

- Nearly normal neuro status

Vitamin B12 Deficiency
(maternal Graves Disease, IF-Ab & mat. B12 Def)

Zn Deficiency (other?)

9 yr old boy w/ autism, refusing to walk

- Presumptive diagnosis of Henoch-Schönlein Purpura (HSP);
- CC: acute refusal to walk, swollen knees and rash.
- Diet hx on admission: “normal for age.”
- Physical exam: agitated, uncooperative, appeared well nourished. Skin: Non-palpable purpuric lesions on feet and ankles, with extension up to knees; no petechiae; no lesions on buttocks. HEENT: no bleeding gums or oral lesions; no epistaxis. Abdomen: non-tender & without organomegaly. Extremities: 2+ pitting edema in feet and ankles, with extension up to knees. Rectal stool hem (-);
- Neuro: grossly intact but difficult to perform due to poor cooperation.
- Labs: CBC sl ↓ Hb/Hct, normal MCV; nl platelet count; ESR 15; urinalysis: negative. PT: prolonged at 15; BUN & creat normal
- On admission given Vit K for ↑ PT

9 y.o. w/ Autism

Additional Diet Hx:
- 1 food x mos;
- Current: soft pretzel + cheese
- No MVI
- No liquid supp or juice

Dx: Scurvy

(NEJM 2007)
Scurvy (x several!)

- 9 yr boy, rash, gingival hypertrophy (NEJM 2007)
- 5 yr boy, w/ worsening limp, refusal to eat, bleeding gums (Contemp Peds ‘07)
- 6 yr boy, ate only burgers + buns, milk, limp (What’s missing?)
- 9 yr boy, sudden onset unable to walk, bruises, very restricted diet (TCH 2005)

- Risk fx: very limited diets (no F/V)
- Get a Hx, make Dx, be a star!

Adolescents s/p Bariatric Surgery (± Rapid Weight Loss)

- CC: 2 wk h/o pain and weakness in legs, unsteady gait, falling down, foot dragging
- Physical exam:
 - No skin or mouth findings
 - Pt can’t look from left to right w/o turning head
- Evaluations: neurologic, rheumatologic, genetic, metabolic
- Dx: Beriberi - peripheral neuropathy, symmetrical, esp LE

Infantile beriberi

- 9 infants p/w:
 - Infection
 - Vomiting
 - Lethargy/restlessness
 - Ophthalmoplegia
 - ↓ thiamine pyrophos, acidosis
- Prompt response to high dose (50 mg/d x 2 wk)
- Infant formula w/o thiamine

Micronutrient Deficiencies: When to Consider

- Primary inadequate / imbalanced / limited diet (e.g., 1 food!)
- Increased requirements
 - physiologic (age, prematurity)
 - metabolic stress (obesity, healing, ↓↓ wt)
- Increased losses
 - mal-digestion (CF), malabsorption (celiac,CF, SBS)
- Unusual exam &/or lab findings

Summary Checklist of MN Signs of Deficiency

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Skin</th>
<th>Mouth</th>
<th>Neuro</th>
<th>Anemia</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ve C</td>
<td>x</td>
<td>x</td>
<td>(x)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Thia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve B12</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve B6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve A</td>
<td>(x)</td>
<td>OPC/SCP</td>
<td>Eye findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve D</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve E</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve K</td>
<td>x</td>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>(x)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>x</td>
<td>(x)</td>
<td>growth, anemia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>