Eisenmenger’s syndrome

M. Beghetti
Pediatric Cardiology
University Children’s Hospital
Geneva, Switzerland

Disclosures

- Consultant
 Actelion, Bayer Schering, Novartis, GSK,
 Pfizer/encysive, Mondobiotech, iNOtherapeutics
- Speakers Bureau
 Actelion, Schering, iNO therapeutics, Encysive
- Grant Support
 Schering, Actelion

Venice 2003: Clinical classification of PH

Pulmonary arterial hypertension
- Idiopathic PAH
- Familial PAH
- Associated with:
 Connective tissue disease
 Congenital systemic-to-pulmonary shunt
 Portal hypertension
 HIV infection
 Drugs and toxins
 Other

PH with left heart disease
- Atrial or ventricular
- Valvular

PH with lung diseases/hypoxaemia
- COPD
- Interstitial lung disease
- Sleep-disordered breathing
- Developmental abnormalities

PH due to chronic thrombotic and/or embolic disease
- PE obstruction of proximal PA
- TE obstruction of distal PA
- Non-thrombotic PE

Miscellaneous
- Sarcoidosis, histiocytosis X, lymphangiomatosis, compression of pulmonary vessels (adenopathy, tumour, fibrosing mediastinitis)

Prevalence of PAH-CHD increases with age

Silde courtesy of Barbara Mulder.

n = 795 open ASD + VSD, p < 0.01

n = 274, p = 0.05

PAH-CHD (%)

Age (years)

0 5 10 15 20 25

VSD (n = 521, p < 0.01)

ASD II (n = 274, p = 0.05)

Slide courtesy of Barbara Mulder.
The demographic profile of CHD is changing

- Adults with CHD
- Children with CHD (90% of live births with CHD)
- 18 y.o. with CHD (80% of children with CHD)
- Live births with CHD (0.8% of live births)

2005: ca. 120,000 adults with CHD (in Germany); 2020: more adults than children

Left-to-right shunt: Evolution

- ASD, VSD or complex defect, ↑ Qp and/or PAP, with left-to-right shunting
- Over time, PVR ↑ resulting in bi-directional flow
- Resistance ↑ further with reversal of shunt: right-to-left → Eisenmenger syndrome → patient becomes ↑ cyanotic

Shear stress and circumferential stretch

- These hemodynamic forces are translated into biochemical signals
- Hemodynamic forces → reaction in vessels → messengers → cellular response

PAH emergence depends on type of CHD

<table>
<thead>
<tr>
<th>Defect</th>
<th>Developed Eisenmenger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults w. CHD</td>
<td>8%</td>
</tr>
<tr>
<td>Adults w. LR shunt</td>
<td>11%</td>
</tr>
<tr>
<td>Large Tr.arterios.</td>
<td>~100%</td>
</tr>
<tr>
<td>Small VSD</td>
<td>3% (adults)</td>
</tr>
<tr>
<td>Large VSD</td>
<td>50%</td>
</tr>
<tr>
<td>Large PDA</td>
<td>50%</td>
</tr>
<tr>
<td>Large ASD</td>
<td>10% → Onset during adulthood 90%</td>
</tr>
</tbody>
</table>

Defect | PAP increased |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus venosus</td>
<td>26% → Onset at a younger age</td>
</tr>
<tr>
<td>Secundum ASD</td>
<td>9%</td>
</tr>
</tbody>
</table>

Genetic susceptibility?

<table>
<thead>
<tr>
<th>Normal</th>
<th>Permissive Genotype</th>
<th>PPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets</td>
<td>Serotonin</td>
<td></td>
</tr>
<tr>
<td>NO+PGI2</td>
<td>ET-1+TXA2</td>
<td></td>
</tr>
<tr>
<td>Elastin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adventitia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMCs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC Proliferation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMPs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulmonary hypertension

- Combination of three main factors:
 - Vasoconstriction
 - Vascular remodeling
 - Thrombosis

which explain the increase in PVR

BMPR2 in CHD:
6% (40 adults and 66 children)¹

<table>
<thead>
<tr>
<th>ADULTS</th>
<th>CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Repaired</td>
<td>BMPR2</td>
</tr>
<tr>
<td>PDA</td>
<td>2 0</td>
</tr>
<tr>
<td>ASD</td>
<td>17 7</td>
</tr>
<tr>
<td>ASD/PAPVR</td>
<td>3 0</td>
</tr>
<tr>
<td>VSD</td>
<td>8 1</td>
</tr>
<tr>
<td>PAPVR</td>
<td>1 0</td>
</tr>
<tr>
<td>TGA</td>
<td>3 3</td>
</tr>
<tr>
<td>AVSD</td>
<td>4 1</td>
</tr>
<tr>
<td>RARE</td>
<td>2 0</td>
</tr>
<tr>
<td>Total</td>
<td>40 12</td>
</tr>
</tbody>
</table>

Total Repaired	BMPR2
PDA	6 3
ASD	21 5
ASD/PAPVR	0 1
VSD	15 8
PAPVR	3 2
TGA	7 3
AVSD	6 3
RARE	8 5
Total	66 29

• 8% fenfluramine²
• 26% IPAH
• 50% familial PAH

Therapeutic approach

- L-to-R shunt with high pulmonary blood flow and low PVR
 - SURGERY as lesion are thought reversible
- Bidirectional shunt with normal or slightly increased pulmonary blood flow and moderate increase in PVR
 - No surgery as high risk of no reversibility
- R-to-L shunt with decreased pulmonary blood flow and high PVR
 - No surgery as lesions thought irreversible
Eisenmenger syndrome: Management

- Not standardised
 - Targeted towards avoiding complications
 - Anticoagulation
 - Diuretics
 - Digoxin
 - Oxygen
 - Phlebotomy
 - Iron

- Calcium channel blockers (CCB)
- Other vasodilators
- “New therapies”
- Heart/lung-lung transplantation

Management

- PRIMUM NON NOCERE
 - Regular follow-up in experienced centers
 - Avoid unnecessary non-cardiac surgery or in expert center with trained anesthetist and cardiac staff
 - Contraception and avoid pregnancy
 - Avoid strenuous exercise
 - Maintain fluid balance, avoid dehydration
 - Annual immunization (influenza, pneumococcus)

- Keep the physiological balance
- Prevent complications
 - Endocarditis prophylaxis

Digoxin/ACE/CCB

- No study showing benefits of digoxin, role in arrhythmias?
- Calcium channel blockers (CCBs) are considered as potentially dangerous (systemic vasodilation) and empiric therapy should be avoided
- No study showing benefit of ACEi but may be considered for trials, CAVE vasodilation

Oxygen

- Controversial
- No real report of efficacy
 - Positive in children with CHD and PVD
 - (Bower et al BHJ 1986)
 - No effect of long-term nocturnal O₂ on natural history or physical capacity in Eisenmenger
 - (Sandoval ARJCCM 2001)
- Lung disease, desaturation
- Use indicated in specific cases
- 23% of 171 cases on O₂ for specific reasons
 - (Diller et al EHJ 2006)
- Tailored O₂ therapy
Anticoagulation

- Endothelial dysfunction, may improve with therapy
- Decreased fibrinolytic activity and release of procoagulant factors in PAH
- Substantial risk of thrombosis
 - Women and low O₂ sat at higher risk
 - Silversides et al. JACC 2003;42:1982
- Correlation with pulmonary blood flow velocity
 - Broberg et al. JACC 2007;634-42
- But hemoptysis
- How to anticoagulate
 - Antiplatelet, coumadin, other …
 - Ideal INR ??? May be 1.5 to 2

Phlebotomy

- Only in patients with symptoms of hyperviscosity
 - Headaches, fatigue, vision problems, dyspnea, paresthesia, hemoptysis, …
- Performed slowly with simultaneous volume replacement (air filters)
 - 250-500 ml in 45 min
- Microcytosis and iron deficiency should be treated immediately

New Therapies

PAH – CHD: Haemodynamic effects of acute and chronic iv epoprostenol

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Acute PG12</th>
<th>Chronic PG12 (1 year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPm (mmHg)</td>
<td>77 ± 20</td>
<td>77 ± 20</td>
<td>61 ± 15</td>
</tr>
<tr>
<td>CI (l / min / m²)</td>
<td>3.5 ± 1.6</td>
<td>4.6 ± 2.4*</td>
<td>5.9 ± 2.7</td>
</tr>
<tr>
<td>PVRi (U · m²)</td>
<td>25 ± 13</td>
<td>21 ± 14</td>
<td>12 ± 7</td>
</tr>
<tr>
<td>MVsat (%)</td>
<td>64 ± 7</td>
<td>67 ± 9</td>
<td>70 ± 8</td>
</tr>
<tr>
<td>RAP (mmHg)</td>
<td>6 ± 5</td>
<td>6 ± 4</td>
<td>8 ± 4</td>
</tr>
</tbody>
</table>

*p < 0.01 chronic vs. baseline & chronic vs acute testing
†p < 0.01 chronic vs. baseline & p < 0.05 chronic vs acute testing
‡p < 0.01 chronic vs. baseline
n=16
mean ± SD

Efficacy of bosentan in PAH-CHD patients

<table>
<thead>
<tr>
<th>PAH sub-group</th>
<th>Parameters</th>
<th>Impact of bosentan</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAH-CHD</td>
<td>6-MWD, NYHA class, haemodynamics</td>
<td>✓</td>
</tr>
<tr>
<td>Eisenmenger’s physiology (incl. BREATHE-5)</td>
<td>6-MWD, NYHA class, haemodynamics, Borg dyspnoea index</td>
<td>✓</td>
</tr>
<tr>
<td>Children (IPAH or PAH-CHD) (incl. BREATHE-3)</td>
<td>Long-term outcome, haemodynamics, NYHA class</td>
<td>✓</td>
</tr>
</tbody>
</table>

- No adverse effect on systemic O$_2$ saturation in EP patients
- Well tolerated

BREATHE-5: Reduced PVR and increased 6-MWD

![Graph showing the reduction in PVR and increase in 6-MWD](image)

- T.E. = -472 dyn·s·cm$^{-5}$, $p<0.038$
- T.E. = 53.1 m, $p<0.008$

BREATHE-5 OLE: Bosentan increased exercise capacity

![Graph showing increased exercise capacity](image)

- Mean (± SEM)
 - Ex-bosentan: $n=26$, $+33.2$ m (23.9)
 - Ex-placebo: $n=9$, $+61.3$ m (8.1)

- Major interest for other therapies
 - Bosentan
 - ETA specific blockers
 - Sildenafil
 - Prostanoids (inhaled, subcutaneous)

- Thrombosis: emboli
- Infection: endocarditis
- System
- Rebound??

- Major interest for other therapies
 - Bosentan
 - ETA specific blockers
 - Sildenafil
 - Prostanoids (inhaled, subcutaneous)

Long term Brompton experience

Kaplan–Meier curves for primary endpoint (death from any cause)
Log rank test
\[p = 0.51 \]

Other therapies: No dedicated controlled trials in PAH-CHD

- **Sildenafil (PDE-5 inhibitor)**
 - In CHD seems similar to IPAH
 - Singh et al, Am Heart J 2006
 - Okay et al, Cardiol Rev 2005
 - Agapito et al, Rev Port Cardiol 2005
 - Rosenthal, Circulation 2004
 - Lim et al, Int J Cardiol 2006 3 ASD, PVR from 7.58 to 3.8
 - Chau et al Int J Cardiol 2006 6 months improvement in sat and haemodynamics
 - Paediatric RCT involving some CHD patients in progress
 - Numerous uncontrolled series coming (abstract or manuscripts)
- **Sitaxentan**
 - Barst et al, abstract AHA 2007 uncontrolled study
 - Randomised trial ??
 - Combination therapies coming

Predictors/risk factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relative Risk</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline NYHA</td>
<td>3.0</td>
<td><0.05</td>
</tr>
<tr>
<td>NYHA changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapy changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasoreactivity testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Post et al EHJ 2004;25:1651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>12.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Phlebotomy, iron</td>
<td>0.9</td>
<td><0.05</td>
</tr>
<tr>
<td>BNP</td>
<td>1.06</td>
<td><0.05</td>
</tr>
<tr>
<td>Others …</td>
<td>0.1</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Kaplan–Meier curves for minor secondary endpoint (death or effective transplant)
Log rank test
\[p = 0.0011 \]

Predictors of deterioration or death!

Transplant

- Heart/lungs or lung transplant and heart surgery
- Optimal timing ???
- 10 year survival for heart/lung is around 30-40% compared to Eisenmenger survival!!!
- New therapies
- Predictors of deterioration or death!
Heart failure

Impact of left ventricular function on survival in Eisenmenger patients

![Graph showing survival vs age and LVEF](image)

Predictors of mortality in Eisenmenger Patients

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relative Risk</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA 3.0</td>
<td>0.0</td>
<td><0.05</td>
</tr>
<tr>
<td>Signs of heart failure</td>
<td>10.3</td>
<td><0.01</td>
</tr>
<tr>
<td>History of documented arrhythmia</td>
<td>12.4</td>
<td><0.05</td>
</tr>
<tr>
<td>Low albumin</td>
<td>0.3</td>
<td><0.05</td>
</tr>
<tr>
<td>High gGt</td>
<td>1.06</td>
<td><0.05</td>
</tr>
<tr>
<td>Low potassium</td>
<td>0.1</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Conventional approach

- PRIMUM NON NOCERE
- Regular follow-up in experienced centers
- Patient education
- Keep the physiological balance
- Prevent complications
- Endocarditis prophylaxis
- Avoid unnecessary non-cardiac surgery or if mandatory perform it in expert center with trained anesthetist and cardiac staff
- Contraception and avoid pregnancy
- Avoid strenuous but allow mild to moderate exercise
- Maintain fluid balance, avoid dehydration
- Annual immunization (influenza, pneumococcus)
- Oxygen: tailored approach
- Anticoagulation: tailored approach

Eisenmenger syndrome: UK Management algorithm

Diagnosis: referral to PAH/CHD centre

- History & examination, CXR & ECG
- Non-invasive tests-ECHO, cardiac MRI, cardiac CT
- Cardiac catheterisation for selected patients only

Functional class/other investigations

- 6-MWT
- Quality of life questionnaire
- Biochemistry, iron studies (transferrin saturation)

Education

- Endocarditis prophylaxis, advice on exercise and other lifestyle issues
- Effective contraception-risk of pregnancy very high

Therapy -general

- Correct iron deficiency
- Consider thromboprophylaxis
- Is there a role for reparative surgery/catheter based intervention?

Therapy -advanced

- Bosentan therapy for class III patients
- Consider other advanced therapies if evidence base widens
- Prostanoids as a bridge to transplantation (or as destination therapy?)
- Inhaled NO or iloprost may have a role for the pregnant patient with PAH

Therapy -other

- Lung or heart/lung transplantation for selected patients failing medical therapy
- Bosentan therapy for class III patients
- Consider other advanced therapies if evidence base widens
- Prostanoids as a bridge to transplantation (or as destination therapy?)

Conventional approach

- PRIMUM NON NOCERE
- Regular follow-up in experienced centers
- Patient education
- Keep the physiological balance
- Prevent complications
- Endocarditis prophylaxis
- Avoid unnecessary non-cardiac surgery or if mandatory perform it in expert center with trained anesthetist and cardiac staff
- Contraception and avoid pregnancy
- Avoid strenuous but allow mild to moderate exercise
- Maintain fluid balance, avoid dehydration
- Annual immunization (influenza, pneumococcus)
- Oxygen: tailored approach
- Anticoagulation: tailored approach
Conclusions

- Expert center of CHD associated with PAH experience
- Familiar with updated approach
- Even if survival has been considered better Eisenmenger patients deserve modern therapies

Summary

- Profile of CHD is changing
- Improved understanding of natural history and pathophysiology:
 - Proposals for revised classification
 - Targeted therapies and dedicated trials
- Early intervention may further improve prognosis in the PAH-CHD/EP population
 - Well-designed studies