Surgical Treatment of Pulmonary Vein Stenosis

Anthony Azakie, MD
Associate Professor of Surgery and Pediatrics
Chief of Pediatric Cardiac Surgery
Surgical Director of the Pediatric Heart Center
Director of the Pediatric Developmental Biology Laboratories (Surgical Section)

University of California San Francisco

March 14, 2009 - 2nd International Conference on Neonatal & Childhood Pulmonary Vascular Disease

Surgery of the Pulmonary Veins
Repair of

- PAPVR / Scimitar syndromes
- Total anomalous pulmonary venous return
- Pulmonary vein stenosis, hypoplasia

TAPVR

A • Supracardiac
 • Infracardiac
 • Mixed
 • Cardiac

B • Obstructed, unobstructed

C • Biventricular heart
 • Single ventricle (RAI)

Repair of TAPVR - Pulmonary Vein Stenosis

- Repair by connecting pulmonary venous confluence to left atrium
- Pulmonary vein stenosis
- Unilateral, bilateral
- 1-4 veins
- Causes:
 1. Technical
 2. Exuberant inflammatory fibrotic response
 3. Primary developmental process
Pulmonary Vein Stenosis

- Following repair of TAPVR
 - 5-15% of repaired TAPVR
 (references: Lacour-Gayet, Zoghbi, Serraf, et al., 1998; Devaney, Chang, Olpe, Bove, 2006; Karamlou, Gurofskyk, Al Sukhni, et al., 2006)
 - Mortality – up to 50%
 - High morbidity
 - Increased risk in single ventricle, RAI/heterotaxy, infracardiac type, hypoplastic veins

Pulmonary Vein Stenosis - Pathology

- Intimal hyperplasia
- Medial hypertrophy
- Periadventitial fibrosis
- Intraparenchymal hypoplasia
- Intraparenchymal obstruction
- Lymphatic ectasia

Medial hypertrophy

Intimal proliferation
Post-Repair Pulmonary Vein Stenosis

- **Repair strategies**
 - Stenting
 - Patch repair
 - Revision
 - High morbidity, mortality, failure

Sutureless Repair

- Introduced by Lacour-Gayet, Coles
- Incision / excision of stenotic region
- Marsupialization with pericardial flaps
- Posterior mediastinal scarring prevents “bleeding” into pleural pericardium
- Care taken around phrenic nerve

Post-Repair Pulmonary Vein Stenosis

- **Sutureless repair**
 - Better outcomes
 - Small number of cases
 - Michigan: \(n = 11 \)
 - Toronto: \(n = 35 \) (25 primary)
 - Denver/Paris: \(n = 23 \)
Risk Factors for Recurrent / Persistent Pulmonary Vein Stenosis
1. Single ventricle – RAI, heterotaxy syndrome
2. Orificial stenosis – discrete
3. Pulmonary vein hypoplasia
4. Nonsutureless repair technique

TAPVR
Post-repair of TAPVR
Primary (developmental, programmed)
Post-operative (non-pulmonary vein surgery, inflammatory, fibrosis)

Primary Sutureless Repair
Adopted as a strategy for patients where the risk of recurrent stenosis is higher:
- Single ventricle, RAI
- TAPVR infracardiac Christmas tree patterns
- Primary pulmonary vein hypoplasia, stenosis
- “Danger” bleeding into pleural space because of lack of posterior mediastinal adhesions

Primary Sutureless Repair for TAPVR / Pulmonary Vein Stenosis – Technique 1
- Incision into pulmonary veins, beyond stenosis, up to parenchyma / pleural reflection
- Sew left atrial cuff or pericardial flap posterior to mediastinum / pleura
Primary Sutureless Repair for Primary Pulmonary Vein Stenosis – Technique 2

UCSF Experience – Primary Sutureless Repair of Pulmonary Veins (n = 13)

- 6 RAL, single ventricle, pulmonary atresia
- 3 Primary pulmonary vein stenosis
- 4 Hypoplasia of 1 or more pulmonary veins in TAPVR
- No operative/surgical mortality
- Median follow-up 15 months (4-30 months)
- 3 Single ventricle patients progressed, 2nd stage palliation
- Out of 52 veins – recurrence at 3 veins of 2 patients

Primary Sutureless Repair: Primary Pulmonary Vein Stenosis

- 6 month old infant
- Premature, low birth weight
- Primary pulmonary vein stenosis
- Ventricular septal defect, patent ductus arteriosus

[video]
Primary Sutureless Repair: Post Surgical - Case Study

- 6 year old
- Pulmonary atresia, intact ventricular septum
- s/p Blalock-Taussig shunt, s/p bidirectional cavopulmonary anastomosis
- Cath/MRI/echo: hypoplastic left pulmonary veins, orificial stenosis
- Primary sutureless repair (pericardial flap) with Blalock-Taussig shunt
- Saturations 60’s -> 80’s postoperatively

References

Primary Sutureless Repair: Post Surgical - Case Study

- TEE of left pulmonary vein flow pattern:

 Pre-operative

 Post-operative

\[\text{\text{Image of TEE}} \]