Management of Small AAAs
Mark Fillinger MD, Jack Cronenwett MD
Section of Vascular Surgery, Dartmouth-Hitchcock Medical Center

Small AAA Ultrasound Surveillance

<table>
<thead>
<tr>
<th>Aortic Diameter</th>
<th>Recommended Follow-up Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.5 cm</td>
<td>None</td>
</tr>
<tr>
<td>2.6 - 2.9</td>
<td>5 Years</td>
</tr>
<tr>
<td>3.0 - 3.4</td>
<td>3 Years</td>
</tr>
<tr>
<td>3.5 - 3.9</td>
<td>1 Year</td>
</tr>
<tr>
<td>4.0 - 4.9</td>
<td>6 Months</td>
</tr>
<tr>
<td>5.0 - 5.5</td>
<td>3 Months</td>
</tr>
</tbody>
</table>

Based on 30,000 65 yr old men screened in Gloucestershire, UK

Medical Management

- SMOKING CESSATION!!!
 - 50-200% increase in rupture risk w smoking
 - Smoking doubles the rate of expansion
- Control Blood Pressure!
 - Independent risk factor for rupture
- Atherosclerotic Risk Factors
 - Leading cause of death...
- And...

Medical Management: Medications

- **Doxycycline** has been shown to decrease aneurysm expansion in animals, and has modest success in small rand. human trials
 - Issues are side effects and length of tx
- Statins have been associated with a reduction in aneurysm expansion in 3 human studies
 - Roughly one-half the rate of expansion
 - Many aneurysm patients have independent indications for statins already
 - Lowers surgical mortality if aneurysm repair needed
 - 20% of patients will have side effects that limit use
When Should AAAs Be Repaired?

When the rupture risk is high compared with the operative risk, in patients with sufficient life expectancy to enjoy the benefit of a prophylactic operation.

AAA Rupture Risk - Size

- **Olmstead County, MN, Population-based**
 - < 4 cm: 0% / year
 - 4-4.9 cm: 1% / year
 - 5-5.9 cm: 11% / year
 - 6-6.9 cm: 26% / year

- **UK Small Aneurysm Trial**
 - < 4 cm: 0.3% / year
 - 4-4.9 cm: 1.5% / year
 - 5.0-5.9 cm: 6.5% / year

- Dramatic increase between 5-6 cm diameter

Randomized Trials

Early Surgery vs. Surveillance of 4.0-5.4 cm AAAs

- **UK SAT Trial** – 1090 patients, age 60-76
 - Elective (open) operative mortality: 5.8%
 - Surveillance: 61% elective repair, 1%/yr rupture
 - Survival: 64% in both groups at 6 years

- **VA ADAM Study** – 1136 (male) patients, age 50-79
 - Elective (open) operative mortality: 2.7%
 - Surveillance: 61% elective repair, 0.6%/yr rupture
 - Survival: 78% surgery, 81% surveillance at 5 years

- Careful surveillance with repair at 5.5 cm is reasonable
Survival: UK Small Aneurysm Trial

Applying AAA Trial Results to Practice

- UK Trial: Patients <70 with >4.5 cm AAAs showed trend toward benefit of early surgery.
- VA Study: 1% women (at higher rupture risk).
- High compliance with surveillance may not be achieved in practice (~70%, Valentine, 2000)
- Patient preference - risk aversion important when alternative treatments are comparable
- AAA diameter is not the only factor that determines rupture risk.

AAA Rupture: Not Just Size

- Proven independent risk factors for rupture:
 - Female gender 3.0 X
 - AAA diameter 2.9 X per cm
 - COPD 0.62/(L FEV)₁
 - Current smoking 1.5 X
 - Hypertension 1.02 per mm Hg
- Probable risk factors
 - Family history
 - Rapid expansion

- UK Small Aneurysm Trial
AAA Wall Stress Superior to Diameter For Estimating Aneurysm Rupture Risk

Results – 3D Stress Analysis

AAA Wall Stress - Finite Element Analysis

AAA Wall Stress: Finite Element Analysis

Maximum Diameter 5.5 cm

Maximum Diameter 5.5 cm
Comparison with Other Indices – Diameter Matched Controls

<table>
<thead>
<tr>
<th>Index</th>
<th>Elective(n = 20)</th>
<th>Ruptured or Symptomatic(n=16)</th>
<th>Difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max AAA diameter, cm</td>
<td>6.6 ± .2</td>
<td>6.6 ± .2</td>
<td>0%</td>
<td>.9</td>
</tr>
<tr>
<td>Peak Wall Stress, N/cm²</td>
<td>38.1 ± 1.3</td>
<td>46.8 ± 4.5</td>
<td>23%</td>
<td>.05</td>
</tr>
<tr>
<td>LaPlace (Max Dia x SBP), N cm²</td>
<td>18.8 ± .6</td>
<td>20.7 ± 1.4</td>
<td>10%</td>
<td>.2</td>
</tr>
<tr>
<td>Max AAA dia/infrarenal ao dia</td>
<td>2.9 ± .1</td>
<td>2.8 ± .2</td>
<td>-3%</td>
<td>.8</td>
</tr>
<tr>
<td>Max AAA dia/suprarenal ao dia</td>
<td>2.8 ± .1</td>
<td>2.8 ± .1</td>
<td>0%</td>
<td>.8</td>
</tr>
<tr>
<td>Max AAA dia/transverse dia L3</td>
<td>1.5 ± .05</td>
<td>1.57 ± .05</td>
<td>5%</td>
<td>.4</td>
</tr>
<tr>
<td>Max AAA dia/AAA length</td>
<td>.7 ± .04</td>
<td>.6 ± .05</td>
<td>-14%</td>
<td>.1</td>
</tr>
</tbody>
</table>

- Fillinger et al, J Vasc Surg, 2002

Accuracy in Predicting Rupture

Rate of Rupture: Diameter and Stress

Rupture Risk Assessment

- Proportional hazards analysis:
 - Diameter, max peak wall stress, age, gender, blood pressure
- Only significant variables:
 - Stress >44 N/cm²:
 - Relative risk 23x, $p<0.0001$
 - Female Gender:
 - Relative risk 3x, $p<0.005$

Rupture at Location of Peak Wall Stress

Estimating AAA Rupture Risk

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>< 5 cm</td>
<td>5-6 cm</td>
<td>> 6 cm</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>Wall Stress</td>
<td>Low 35 N/cm²</td>
<td>Mdm 45 N/cm²</td>
<td>High 55 N/cm²</td>
</tr>
<tr>
<td>Smoking/COPD</td>
<td>None, mild</td>
<td>Moderate</td>
<td>Severe/steroids</td>
</tr>
<tr>
<td>Expansion Rate</td>
<td>< .3 cm/yr</td>
<td>.3-.6 cm/yr</td>
<td>> .6 cm/yr</td>
</tr>
<tr>
<td>Family History</td>
<td>None</td>
<td>One</td>
<td>Multiple</td>
</tr>
<tr>
<td>Hypertension</td>
<td>None</td>
<td>Controlled</td>
<td>Uncontrolled</td>
</tr>
</tbody>
</table>

When Should AAAs Be Repaired?

Patient Selection

Rupture Risk | Operative Risk | Life Expectancy

30 Day Mortality of Elective Open AAA Repair
US Medicare Patients -1996

30-Day Mortality (%)

- Dartmouth Atlas of Vascular Health Care
Open AAA Operative Mortality

- Independent predictors
 - Creatinine > 1.8 6x
 - Cardiac ischemia 3x
 - COPD 2.5x
 - Age (per decade) 2.1x

- Surgeon / hospital specific results
 - Importance of volume and specialty training

Mortality of Elective Open AAA Repair

Effect of Surgeon Volume – Medicare Patients

- UK Small Aneurysm Study Brady et al, Br J Surg, 2000

Predicting Open AAA Operative Mortality

- Surgeon-specific average mortality:
 - 3% 4% 5% 6% 8% 12%
 - Score -5 -2 0 +2 +5 +10

- Individual risk factors:
 - Age 60 70 80 Creat >1.8 +12
 - Score -4 0 +4 COPD +7
 - CHF +8; EKG Ischemia +8; MI +3; Female: +4

- Estimated individual mortality:
 - Total Score: -5 0 5 10 15 20 24 30 35 40
 - Op Mortality(%): 1 2 3 5 8 12 19 28 39 51

Endovascular AAA Repair

- Reduced mortality, morbidity, recovery time, LOS
- Higher re-intervention rate, some late ruptures
EVAR 1 Trial

 - Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1)
 - Randomized controlled clinical trial
 - >1000 patients
 - Significantly lower 30-day mortality for EVAR vs Open AAA repair (EVAR 1.6% vs Open 4.6%, p=.0007).
 - In follow-up, secondary interventions were more common in patients allocated EVAR (9.8% vs 5.8%, p=0.02)
 - Aneurysm-related mortality benefit persists to 4 yrs

U.S. Medicare: EVAR vs Open 2001-2004

<table>
<thead>
<tr>
<th></th>
<th>EVAR</th>
<th>Open</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (30 day)</td>
<td>1.2%</td>
<td>4.8%</td>
<td>.001</td>
</tr>
<tr>
<td>Discharge to rehab facility</td>
<td>5.6%</td>
<td>18.4%</td>
<td>.001</td>
</tr>
<tr>
<td>Late rupture (4 years)</td>
<td>1.8%</td>
<td>0.5%</td>
<td>.001</td>
</tr>
<tr>
<td>Secondary aneurysm procedures</td>
<td>9.0%</td>
<td>1.7%</td>
<td>.001</td>
</tr>
<tr>
<td>Surgery for bowel obstruction</td>
<td>4.1%</td>
<td>9.7%</td>
<td>.001</td>
</tr>
<tr>
<td>Hospitalization for bowel obstruction</td>
<td>8.1%</td>
<td>14.2%</td>
<td>.001</td>
</tr>
<tr>
<td>Total 2 procedure/hosp</td>
<td>21.2%</td>
<td>25.6%</td>
<td></td>
</tr>
</tbody>
</table>

Endovascular vs Open AAA Repair

- Decision analysis using Eurostar and Medicare data
- Comparable quality-adjusted survival
 - Higher initial morbidity, mortality open repair
 - Offset by late intervention, rupture of EVAR
- Endovascular Repair Does not change the threshold diameter for repair in most patients

Benefit of EVAR Relative to Pt Health

Patient fitness and survival after abdominal aortic aneurysm repair in patients from the UK EVAR trials

The EVAR Trial Participants

Correspondence to: M.J. C. Berry, Vascular Surgery Research Group, Imperial College London, Department of Vascular Surgery, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK (e-mail: mcberry@imperial.ac.uk)

Background: The aim was to use a validated fitness score to determine whether fitter patients with a large abdominal aortic aneurysm (AAA) benefited from having open rather than endovascular repair.

Methods: The Cerebral Performance Category Index (CPC) was applied to patients in the Endovascular Aneurysm Repair (EVAR) I and II trials. Interaction terms between CPC and randomized group assessed the effect of fitness and type of AAA repair on outcomes: 30-day mortality and 5-year survival.

Results: The median CPC scores were 3 (95% CI: 2.2-3.5) for 522 EVAR I patients and 0 (95% CI: 0-1) for 404 EVAR II patients (range: 0-3). This shows that EVAR patients were classified as good (79% patients, mean CPC = 2.2, moderate = 14% patients, mean CPC = 2.8), and poor (14% patients, mean CPC = 4.2). Only in the good-fitness group did 30-day mortality consistently favour endovascular repair (odds ratio 0.64, P = 0.02), but overall the type of intervention was not significant (P = 0.65). For 4-year all-cause and aneurysm-related mortality, there was no benefit for either treatment across all fitness scores (P = 0.24 and P = 0.72 respectively).

Conclusion: The benefit of endovascular repair was mostconsistent in the fitter patients. There was no evidence that the fitter patients benefited more from surgery.
Predicting EVAR Operative Mortality

<table>
<thead>
<tr>
<th>Scoring System</th>
<th>Mortality</th>
<th>Morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC</td>
<td>95% CI</td>
</tr>
<tr>
<td>GAS</td>
<td>0.678</td>
<td>0.48-0.87</td>
</tr>
<tr>
<td>V-POSSUM</td>
<td>0.663</td>
<td>0.51-0.81</td>
</tr>
<tr>
<td>m-CPI</td>
<td>0.629</td>
<td>0.45-0.81</td>
</tr>
<tr>
<td>CPI</td>
<td>0.646</td>
<td>0.49-0.81</td>
</tr>
</tbody>
</table>

When Should AAAs Be Repaired?

- Surveillance of AAAs < 5.5 cm is safe, but:
 - Compliance with follow-up must be high
 - Repair for rapid expansion
 - Some AAAs < 5.5 cm are higher risk:
 - Female, smoker, COPD, high wall stress
- Threshold diameter higher if high operative risk
- Indications are same for open and endo repair
- Ultimately decisions must be individualized based on these factors and patient preferences

Thank You!