Carotid Stenting with Flow Reversal

Marc Schermerhorn, MD
Division of Vascular and Endovascular Surgery
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA

Limitations of Other Embolic Protection Devices - Filters

- Must cross lesion unprotected
- Porosity of filter will allow passage of small particles
- Small particles (<100 micron) may cause infarct
 - Rapp et al. Stroke 2003
- Apposition of filter may be incomplete
- Filter may be overwhelmed by large embolic load
- Occlusion
- Embolization during attempt at recapture

Limitations of Distal Occlusion

- Must cross lesion unprotected
- Emboli may travel through ECA collaterals to intracerebral circulation
- Aspiration catheter may not allow capture of large particles
- Poor visualization of lesion during occlusion

Limitations of Current Embolic Protection

- Both Filters and Distal Occlusion
- Potential for damage to distal ICA
 - Dissection
 - Spasm
Flow Reversal System Components

- Balloon Sheath & Dilator
- Balloon Wire
- External Filter

REVERSE FLOW TECHNIQUE
Why Use Embolic Protection?

Goal in treatment of carotid stenosis is to prevent stroke (embolization)
Perioperative embolic protection logical (if it works)
How do we know if it works?

CVA / Death Rates
 - 1.8% w/ protection
 - 5.5% without
 - 2.2% w/ protection
 - 5.3% without
 - Asymptomatic: 1.8% vs 4.0%
 - Symptomatic: 2.7% vs 6.0%
- EVA 3S NEJM 2006;355:1660-71
 - 8% w/ protection
 - 25% without

Surrogate Measures of Effectiveness

Diffusion Weighted MRI
- Damaged Brain
 - Most neurologic exams may miss subtle deficits
 - Presence and # predict clinical stroke
 - Correlates with dementia and decline in cognitive function (Vermeer et al. NEJM 2003)

DWI Detected Brain Lesions after CAS With and Without Embolic Protection

Kastrup et al. Stroke 2006 (n=206)
- 49% w/ protection
- 67% w/o protection

DWI Comparison of Distal Occlusion and Filter

Kim et al. Korean J Radiol 2007 (n=72)
- 39.4% with distal occlusion balloon
- 39.5% with filter
Distal occlusion of ICA vs Occlusion of both ICA and ECA

Asakura et al Neuroradiology 2006 (n=45)

New DWI lesions
- 55% Distal occlusion of ICA alone
- 36% Distal occlusion of ICA and ECA
- p<0.01
- 11.5% Diagnostic angiography

DWI lesions with CEA vs CAS

<table>
<thead>
<tr>
<th></th>
<th>CEA</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poppert et al J Neurol 2004 (n=129)</td>
<td>17%</td>
<td>54%</td>
</tr>
<tr>
<td>Flach et al J Endovasc Ther 2004 (n=44)</td>
<td>9%</td>
<td>43%</td>
</tr>
<tr>
<td>Roh et al AJNR 2005 (n=44)</td>
<td>4%</td>
<td>36%</td>
</tr>
<tr>
<td>Tedesco et al JVS 2007 (n=69)</td>
<td>0%</td>
<td>70%</td>
</tr>
</tbody>
</table>

DWI after CAS with Flow Reversal vs Diagnostic Cerebral Angio

Asakura et al AJNR 2006

- CAS w/ Flow Reversal (n=11) 18%
- Diagnostic Angio (n=26) 11%
- p=.6

TCD Detected Embolization with CAS

Al-Mubarak et al circ 2001 (n=76)

<table>
<thead>
<tr>
<th></th>
<th>Filler</th>
<th>Unprotected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheath placement</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Wiring</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Predilation</td>
<td>12</td>
<td>32*</td>
</tr>
<tr>
<td>Stenting</td>
<td>17</td>
<td>75*</td>
</tr>
<tr>
<td>Postdilation</td>
<td>5</td>
<td>27*</td>
</tr>
<tr>
<td>TOTAL</td>
<td>68</td>
<td>164*</td>
</tr>
</tbody>
</table>

p<0.01
TCD Filter vs Proximal Occlusion w/ Flow Arrest

Schmidt et al JACC 2004 (n=42)

<table>
<thead>
<tr>
<th></th>
<th>Filter Group</th>
<th>MO.MA Group</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheath placement/position</td>
<td>20 ± 15</td>
<td>18 ± 10</td>
<td>NS</td>
</tr>
<tr>
<td>device placement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wearing of the stent</td>
<td>25 ± 33</td>
<td>3 ± 3</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Stent deployment</td>
<td>73 ± 49</td>
<td>11 ± 19</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Balloon dilation</td>
<td>79 ± 31</td>
<td>12 ± 21</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Retrieval of the protection</td>
<td>14 ± 15</td>
<td>19 ± 15</td>
<td>NS</td>
</tr>
<tr>
<td>device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>196 ± 84</td>
<td>57 ± 41</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Flow Arrest Trials – Stroke / Death

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>CVA/Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coppi et al J Card Surg 2005</td>
<td>416</td>
<td>4.6%</td>
</tr>
<tr>
<td>Reimers et al J Endo Ther 2005</td>
<td>157</td>
<td>5.7%</td>
</tr>
</tbody>
</table>

Flow Reversal
Clinical Outcomes
Stroke / Death

Adami et al J Endovasc Ther 2002 (n=28) 0%
Parodi et al JVS 2005 (n=100) 3%
Rabe et al J Interven Cardiol 2006 (n=56) 1.8%
Grunwald et al Neuroradiology 2007 (n=36) 2.7%
Parodi et al J Cardiovasc Surg 2007 (n=200) 1.5%

EMPiRE
Carotid Stenting with Flow Reversal
Patient Demographics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Age (mean, range)</td>
<td>70</td>
<td>(46-89)</td>
</tr>
<tr>
<td>Male</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Octogenarian</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Symptomatic</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>
EMPiRE - Flow Reversal System
Procedure Outcomes

(N=245) Mean (Min, Max)

Procedure Time (minutes) 80 (25, 345)
Flow Reversal Time (minutes) 15 (2, 56)
Fluoroscopy Time (minutes) 20 (6, 164)
Hospital Days 1 (0, 24)

EMPiRE - Flow Reversal System
Procedure Technical Results

96.3% Flow Reversal System Success (n=236)

3.7% Flow Reversal System Technical Failure (n=9)
 Unable to tolerate flow reversal (n=3)
 Balloon sheath rupture (n=2)
 Tortuous anatomy (n=2)
 Unable to position device (n=2)

99.2% Carotid Stent Success (n=243)
 i.e. tech failure does not preclude success

EMPiRE—Flow Reversal Intolerance

Intolerance reported in 6 (2.4%) subjects
 Flow Reversal successfully used in 3/6
 Flow Reversal discontinued in 3/6

No permanent neurological deficits—intolerance resolved when balloons deflated
Intolerance of Flow Reversal?

Rare
Limited by avoidance of hypotension & bradycardia
- Glycopyrrolate
- Atropine
- “Seatbelt and Airbag” technique

EMPiRE Adverse Events

- Groin Hematoma: 3.7%
- Anemia: 4.1%
- Arrhythmia: 4.9%
- Hypertension: 4.9%
- Hypotension: 16.7%

% of Subjects Experiencing Event (N=245)

Avoid Isolated Hemisphere

Stroke Death MI

- Stroke / Death: 2.9%
- Stroke / Death / MI: 3.7%
- Death / Major Stroke: 0.8%
- Minor Stroke: 2.0%
30-day Stroke / Death / MI in High Risk U.S. Carotid Stent Registries

SAPPHIRE	ARCHER 2	SECURITY	MAVERIC-2	BEACH	CABERNET	EMPiRE	EPIC
7.8% | 8.2% | 7.5% | 5.3% | 5.4% | 3.8% | 3.7% | 3.0%

EMPiRE Major Adverse Event Rates by Subgroup
(Stroke, Death, MI)

- Octogenarians (n=38)
 - 2.6%
- Symptomatic (n=78)
 - 3.8%
- Asymptomatic (n=167)
 - 3.6%

% of Subjects in Subgroup with MAE

- Octogenarians (n=38)
- Symptomatic (n=78)
- Asymptomatic (n=167)

Trans-Cervical Carotid Stenting with Flow Reversal
Trans-Cervical Carotid Stenting with Flow Reversal

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Sample Size</th>
<th>Stroke/Death Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al</td>
<td>JVS 2004</td>
<td>21</td>
<td>0%</td>
</tr>
<tr>
<td>Criado et al</td>
<td>JVS 2004</td>
<td>50</td>
<td>0%</td>
</tr>
<tr>
<td>Criado et al</td>
<td>JVS 2007</td>
<td>100</td>
<td>2%</td>
</tr>
<tr>
<td>Matas et al</td>
<td>JVS 2007</td>
<td>62</td>
<td>3.2%</td>
</tr>
<tr>
<td>Alvarez et al</td>
<td>JVS 2008</td>
<td>36</td>
<td>0%</td>
</tr>
</tbody>
</table>

Flow Reversal the New Gold Standard

- Different approach to embolic protection
- Overcomes major flaws of prior devices
- DWI rates comparable to diagnostic angiography
- Stroke and Death rate compares favorably to other embolic protection systems and CEA
- Easy to master
- 9Fr arterial access, venous access
- Device of choice for majority of patients
- Transcervical approach for difficult access