The Role of Surgery in Stage IIIA NSCLC

Royce Calhoun, MD
Asst. Professor
Div. Of Cardiothoracic Surgery
UC Davis Med Center

Learning Objectives

• Define Stage IIIA NSCLC
 – Evidence based staging modalities
 – Understanding heterogeneity
• Review data regarding surgery alone for stage IIIA NSCLC
• Review data regarding post-operative therapy (adjuvant) for Stage IIIA NSCLC
• Review data regarding pre-operative therapy (neo-adjuvant) for Stage IIIA NSCLC

IIIB

• N3, T4 or T3N2
• Many trials have a smattering of IIIB
• Generally considered non-surgical
• New IASLC staging system will
 – Keep nodes as is
 – Malignant pleural effusion becomes M
 – Ipsilateral difft lobe goes from M to T4
• Not going to address

NSCLC Staging

Current Treatment and Survival Rates

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment</th>
<th>5-Year Survival, %*</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Surgery</td>
<td>60-70</td>
</tr>
<tr>
<td>II</td>
<td>Surgery</td>
<td>30-50</td>
</tr>
<tr>
<td>IIIA</td>
<td>Surgery/ Multimodality Regimen</td>
<td>10-30</td>
</tr>
<tr>
<td>IIIB</td>
<td>Chemotherapy/ Radiation</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>Chemotherapy</td>
<td><1</td>
</tr>
</tbody>
</table>

*Overall 5-year survival is 14%.

Fundamental Issues

- How do you define Stage III: imaging vs tissue?
- If satisfied with stage, form of Tx: surgery alone, neoadjuvant, adjuvant, definitive chemorads
- If neoadjuvant, do you restage prior to surgery, how extensive?
How Do You Define Stage IIIA?

1. CT
2. PET
3. PET/CT
4. Mediastinoscopy (2, 4 and 7)
5. Chamberlain/VATS (5, 6)
6. Transbronchial Bx (2, 4, 7, 10)
7. Endoscopic US (2, 4, 7, 8, 9)

Heterogeneity of Stage III NSCLC

- Microscopic vs. Bulky
- Fixed vs. Mobile
- Single vs. Multistation
Case

- 81 YO male with cough
- CXR showed RUL mass
- CT guided FNA demonstrated NSCLC
- Good performance status
- PFTs
 - FEV1 1.5 L (50%)
 - DLCO 60%
 - ABG 7.47/35/83
What is stage of this tumor?
1. IA
2. IB
3. IIA
4. IIB
5. IIIA
6. IIIB
7. Not known

Carefully Staged
- CT with IV contrast
- PET/CT
- FOB/Med (separate procedure)
- Thoughtful evaluation and conversation with pt. and family
Mediastinoscopy

- 2R, 4R, 7 and 4L nodes negative
- Tumor not adherent to airway
Resected Specimen

RUL Endobronchial Tumor

Final Pathology

- 7 cm poorly differentiated squamous cell carcinoma
- Nodal stations 4, 7, 8, 9, 10,11 neg
- Pathologic stage T3N0-IIB
Role of CT, PET in Stage III NSCLC

- ACOSOG Z0050 Trial
 - 303 pts from 22 institutions underwent PET after routine staging (CT, bone scan and brain imaging)
 - Deemed resectable, went to surgery
 - Preop staging compared to path

Accuracy of PET for Mediastinal Nodes

<table>
<thead>
<tr>
<th>Path</th>
<th>CT</th>
<th>PET</th>
<th>CT + PET</th>
<th>P value CT vs PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>147/168 (88%)</td>
<td>128/168 (76%)</td>
<td>132/168 (89%)</td>
<td>>0.5</td>
</tr>
<tr>
<td>N1</td>
<td>4/31 (13%)</td>
<td>13/31 (42%)</td>
<td>14/31 (45%)</td>
<td>0.0177</td>
</tr>
<tr>
<td>N2/N3</td>
<td>18/57 (32%)</td>
<td>33/57 (58%)</td>
<td>30/57 (53%)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Adapted from Reed et al., JTCVS 2003;126:1943

Role of PET in Staging of NSCLC Results of ACOSOG Z0050

"Use of PET for mediastinal staging should not be relied on as a sole staging modality and positive findings should be confirmed by mediastinoscopy."

Reed et al., JTCVS 2003;126:1943
Approaches in Stage IIIA NSCLC

- Surgery Alone
- Adjuvant (Postoperative)
 - Chemotherapy, Radiotherapy, or Chemoradiotherapy
- Neoadjuvant (Preoperative)
 - Chemotherapy or Chemoradiotherapy
- Non-operative
 - Definitive Chemoradiotherapy

Multidisciplinary Team

- Primary Care
- Radiology
- Pathology
- Pulmonary
- Thoracic Surgery
- Medical Oncology
- Radiation Oncology

Typical Multimodality Tumor Board?

Lessons from non-Randomized Data in Surgery for Stage IIIA
Heterogeneity of Stage IIIA and Role of Surgery

N= 702

Andre, JCO 18: 2981-9, 2000

Surgery vs. Multimodality Tx
MD Anderson Experience

• 353 pts pathologically Stage IIIA
• Retrospective Analysis, 1986-2001
• 87% RO resection
• Surgery Alone 33%
• Surgery + XRT 44%
• Surgery + CT +/- XRT 23%

Survival Relative to Nodal Dz

Survival Relative to Extent of Resection

Copyright ©2005 The American Association for Thoracic Surgery
Surgery vs. Multimodality Tx
MD Anderson Experience

<table>
<thead>
<tr>
<th></th>
<th>3 yr Survival</th>
<th>5 yr Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery</td>
<td>30%</td>
<td>17%</td>
</tr>
<tr>
<td>Surgery +</td>
<td>38%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Median survival: Surgery-15.9 mos, Multimodality-25.3 mos

Survival not affected by type of resection
- 89 pneumonectomies (25%)
- 9% mortality
- 1 death in 13 with periop Tx (7.7%)

Neoadjuvant Tx for Stage III
Memorial Sloan-Kettering Experience

- Retrospective review, 1993-99
- 470 pts had neoadjuvant therapy
- Platinum based in 70%
- 316 (70.8%) were stage III
- R0 resection in 77.4%
- Operative mortality 4%

Martin, J et al. JCO, 2002;20:1989

Pathologic CR 4.5%
- Downstaged in 33%
- Pneumonectomy in 95 pts (21%)
- Pneumonectomy was associated with increased risk of death

Martin, J et al. JCO, 2002;20:1989
Neoadjuvant Tx for Stage III
Memorial Sloan-Kettering Experience

- 198 pts with residual N2 disease
- RO resection in 144

<table>
<thead>
<tr>
<th></th>
<th>Median mos</th>
<th>3 yr</th>
<th>5 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>20.7</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>R1</td>
<td>17.2</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>R2</td>
<td>9.2</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Martin, J et al. JCO, 2002;20:1989

Neoadjuvant Tx for Stage III
Memorial Sloan-Kettering Experience

- “it may be appropriate to proceed with resection in patients who have residual N2 disease when the resection is likely to be complete”

Martin, J et al. JCO, 2002;20:1989

Survival of Patients With Unsuspected N2 (Stage IIIA) Non-small-Cell Lung Cancer

- Retrospective review 1998-2007
- 148 pts clinically Stage I or II
- Neg PET/CT for Stage III
- Lobectomy via thoracotomy with lymph node dissection
- 93% received adjuvant CT
- 13% received PORT

Cerfolio and Bryant, Ann Thorac Surg, 2008;86: 362-367

Survival Relative to Nodal Status

Cerfolio and Bryant, Ann Thorac Surg, 2008;86: 362-367
Trials to Support Multimodality Tx for Stage IIIA NSCLC

Adjuvant Trials Including Stage IIIA Patients

Trial	Regimen	Stage	Overall Survival (CT vs. Observed)	No. of Pts (CT vs. Observed)	No. of Pts Receiving RT (%)
IALT	CT vs. observation (CT: cisplatin/vindesine, mitomycin/ifosfamide/cisplatin, mitomycin/vinblastine/cisplatin or vincristine/cisplatin)	I–IIIA	2-year survival rate: 70.3% vs. 66.7% (P=0.03)	932 / 935	475 (25.4%)
BLT	CT vs. observation (CT: cisplatin/vindesine, mitomycin/ifosfamide/cisplatin, mitomycin/vinblastine/cisplatin or vincristine/cisplatin)	I–IIIA	2-year survival rate: 60% vs. 56%	192 / 189	52 (14%)
ALPI	Mitomycin/ Vindesine/cisplatin vs. observation	I–IIIA	Median: 55.2 mo vs. 48 mo	548 / 540	470 (43.2%)
ANITA	vinorelbine/cisplatin vs. observation	I–IIIA	Median: 65.8 mo vs. 43.3 mo (P=0.013)	433 / 407	NR

ALPI=Adjuvant Lung Project Italy; ANITA=Adjuvant Novelbine International Trialist Association; BLT=Big Lung Trial; CT=chemotherapy; IALT=International Adjuvant Lung Cancer Trial; NR=not reported; RT=radiation therapy.

ANITA Trial

- Patients in the chemotherapy group with stage II or IIIA NSCLC derived a significant survival advantage from treatment.
- There was no apparent benefit for stage IB patients.
- Median follow-up time was 70 months.
Lung Adjuvant Cisplatin Evaluation (LACE)

- Meta analysis of ALPI, ANITA, BLT, IALT and JBR10
- Median f/u 5.1 yrs
- 5 yr absolute benefit of 4.2% with CT
- Favors Stage II and III (HR 0.83)

Problems with Adjuvant Tx

- Overall poor compliance (50-66%)
- Smattering of RT
- Is there a better way?

Neoadjuvant Therapy for Stage III

Induction Chemotherapy for Stage IIIA NSCLC

<table>
<thead>
<tr>
<th>Trial, Arm</th>
<th>N</th>
<th>Med Surv</th>
<th>3-Year Surv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosell, 1994 Surgery</td>
<td>30</td>
<td>8 m</td>
<td>0%</td>
</tr>
<tr>
<td>CT → Surgery</td>
<td>30</td>
<td>26 m</td>
<td>23%</td>
</tr>
<tr>
<td>Roth, 1994 Surgery</td>
<td>32</td>
<td>11 m</td>
<td>15%</td>
</tr>
<tr>
<td>CT → Surgery</td>
<td>28</td>
<td>64 m</td>
<td>56%</td>
</tr>
</tbody>
</table>

From Rosell, 1994

Rosell, NEJM 330: 153, 1994
Roth, JNCI 86: 673: 1994
Preoperative Chemotherapy vs Surgery alone in Stage III NSCLC: Phase III Trials

<table>
<thead>
<tr>
<th>Authors</th>
<th>Chemo Regimen</th>
<th>RT post</th>
<th>Stge</th>
<th>Patient s</th>
<th>MST (Month)</th>
<th>5 Yrs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass (1992)</td>
<td>DDP-VP16</td>
<td>54-60</td>
<td>cN2</td>
<td>14 13</td>
<td>16 29</td>
<td></td>
</tr>
<tr>
<td>Rosell (1994)</td>
<td>MIP</td>
<td>50</td>
<td>IIa</td>
<td>30 30</td>
<td>8 26*</td>
<td>0 17</td>
</tr>
<tr>
<td>Roth (1994)</td>
<td>DDP-VP16</td>
<td>66</td>
<td>IIa</td>
<td>32 28</td>
<td>14 21*</td>
<td>15 36</td>
</tr>
<tr>
<td>Deperie (2002)</td>
<td>MIP</td>
<td>66</td>
<td>I-IIIA</td>
<td>176 179</td>
<td>26 37</td>
<td>41 52</td>
</tr>
<tr>
<td>Tsucha (2003)</td>
<td>DDP-VDS</td>
<td>-</td>
<td>IIa</td>
<td>31 31</td>
<td>17 16</td>
<td>10 22</td>
</tr>
</tbody>
</table>

*p<0.05

SWOG 8805: Chemoradiation Followed by Surgery for Stage IIIA/IIIB NSCLC

N=126, Path-staged N2 or N3 IIIA/IIIB NSCLC

- Cisplatin/VP-16 x2 w/concurrent XRT 45 Gy
- (if no PD)
- Surgery
- (if R1/R2 or residual N2+)
- Cis/VP-16 x2, RT to 60 Gy

INT 0139: Definitive CT/RT vs. Induction CT/RT → Surgery for Stage IIA NSCLC

<table>
<thead>
<tr>
<th>IIA pN2</th>
<th>N = 439</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Residual N2+</td>
<td>39</td>
</tr>
<tr>
<td>Residual N2+</td>
<td>35</td>
</tr>
</tbody>
</table>

(p = 0.002)

Hypothesis:
Is CT/RT doing the work, and is surgery more prognostic than therapeutic?

SWOG 8805: Encouraging and Provocative Results

- Resection rate of 85% for IIA, 80% for IIIB
- 13 treatment-related deaths (10%)
- Median survival 15 months; 3-year survival 26%
- Restaging CT poorly predictive of pathologic response
- 26 of 65 relapses were CNS, including 19 brain only

Albain, IASLC 2003, Lung Cancer 41 (Suppl 2): A#PL-4
Intergroup 0139/RTOG 9309

Progression-Free Survival by Treatment Arms

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Failed/Total</th>
<th>Logrank p</th>
<th>Hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT/RT/S</td>
<td>159/202</td>
<td>0.017</td>
<td>0.77 (0.62, 0.96)</td>
</tr>
<tr>
<td>CT/RT</td>
<td>172/194</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Alive without Progression

- Months from Randomization: 0 12 24 36 48 60
- Failed/Total:
 - CT/RT/S: 159/202
 - CT/RT: 172/194

Overall Survival by Treatment Arms

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Failed/Total</th>
<th>Logrank p</th>
<th>Hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT/RT/S</td>
<td>145/202</td>
<td>0.24</td>
<td>0.87 (0.70, 1.10)</td>
</tr>
<tr>
<td>CT/RT</td>
<td>155/194</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Alive

- Months from Randomization: 0 12 24 36 48 60

INT 0139 Treatment-Related Deaths on CT/RT/S Arm (n=16)

<table>
<thead>
<tr>
<th>Type of Surgery</th>
<th>Total (of n=202)</th>
<th>Deaths n (% total)</th>
<th>Cause of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>38</td>
<td>1 (3%) Pneumonitis</td>
<td></td>
</tr>
<tr>
<td>Exploration only</td>
<td>9</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Wedge</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Lobectomy</td>
<td>98</td>
<td>1 (1%) ARDS</td>
<td></td>
</tr>
<tr>
<td>Pneumonectomy</td>
<td>54</td>
<td>14 (26%) ARDS/respiratory 11; miscellaneous, 3</td>
<td></td>
</tr>
<tr>
<td>(R) simple</td>
<td>17</td>
<td>5 (29%)</td>
<td></td>
</tr>
<tr>
<td>(R) complex</td>
<td>12</td>
<td>6 (50%)</td>
<td></td>
</tr>
<tr>
<td>(L) simple</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(L) complex</td>
<td>19</td>
<td>3 (16%)</td>
<td></td>
</tr>
</tbody>
</table>

Lung INT 0139: Patterns of Failure

<table>
<thead>
<tr>
<th>Site of First Progression</th>
<th>Arm 1 (CT/RT/S)</th>
<th>Arm 2 (CT/RT)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local relapse only</td>
<td>10%</td>
<td>22%</td>
<td>0.002</td>
</tr>
<tr>
<td>primary</td>
<td>2%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>nodes</td>
<td>7%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>both</td>
<td>1%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Brain only</td>
<td>11%</td>
<td>15%</td>
<td>0.29</td>
</tr>
<tr>
<td>All distant metastases</td>
<td>37%</td>
<td>42%</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Summary

- Stage IIIA NSCLC is a heterogenous disease and must be treated as such- tailored Tx's
- Pts with IIIA need a multidisciplinary approach (Thor Surgeon, Onc, Rad Onc)
- CT, PET and CT/PET are not adequate to rule in mediastinal disease
- Mediastinoscopy remains gold standard for pathologic confirmation of mediastinal nodes

Summary

- Surgery continues to have a role in stage IIIA NSCLC
- Neoadjuvant Tx can achieve downstaging
- Downstaging is associated with survival benefit
- RO resection is associated with survival benefit
Summary

- Surgery (RO) should be considered in pts after neoadjuvant Tx if no evidence of PD
- The possibility of pneumonectomy should be considered but not used as an absolute criteria to decline surgery
- Encourage participation in trials