Elective Induction of Labor

Aaron B. Caughey MD, PhD
Professor and Chair
Director, Center for Women’s Health
Department of Obstetrics and Gynecology
Oregon Health & Science University

Financial Relationships

- No relationship to any aspect of private industry
- Funded by:
 - NICHD – WRHR
 - AHRQ – Elective Induction of Labor
 - RWJ – Mode of Delivery: Outcomes, Preferences and Costs

Elective IOL

- What?
 - No Medical Indication
- Why?
 - Patients
 - MDs
 - Systems

Elective IOL – What?

- 24 yo G1P0 at 39 weeks GA with A2GDM
- 36 yo G4P0 at 39 wks GA s/p IVF
- 28 yo G2P1 at 39 wks GA, 3 cms, no ctxns
- 32 yo G1P0 at 39 wks with gestational HTN
Elective IOL – What?

- Not an indication for IOL
 - Impending macrosomia
 - Increased risk for developing:
 - Preeclampsia
 - IUGR (e.g. EFW 19%ile)
 - Favorable cervix

Elective IOL

- Why?
 - Patients
 - Control schedule/timing
 - Prevent future complications
 - MDs
 - Prevent future complications
 - Control schedule/timing
 - Systems
 - Prevent future complications
 - Control schedule/timing

Elective IOL

- Why Not?
 - Patients
 - Increases cesareans (does it really?)
 - Increases iatrogenesis
 - MDs
 - Increases cesareans (are we sure of this?)
 - Longer labors
 - Systems
 - Unclear health outcome differences
 - Increases costs

Case Question

27 yo G1P0 at 38 1/7 requesting IOL
Who would offer EIOL in this setting?

A. Yes
B. No
Case Question

27 yo GrP0 at 40 1/7 requesting IOL
Who would offer EIOL in this setting?

A. Yes
B. No

Elective IOL at 38 wks

Yes
↑ maternal prefs
↑ md prefs
↑ costs
→ neonatal comps
↑ cesareans
↑ maternal comps

No

Elective IOL at 40 wks

Yes
↓ neonatal comps
↑ maternal prefs
↑ md prefs

No
↑ cesareans
↑ maternal comps
↑ costs

Elective IOL - CS

- Does IOL increase cesarean delivery?
- Cohort and case-control data
 - IOL increases cesareans
- Prospective RCTs
 - 41 weeks GA – decreases cesareans
 - <41 weeks GA – ?
Induction of Labor

- Comparison of IOL vs. ANT
 - Hannah et al, NEJM, 1992
- 1701 IOL @ 41 wks vs. 1706 ANT @ 41 wks
 - C/S higher in ANT group (24.5% vs. 21.2%)
 - C/S for FD higher as well (8.3% vs. 5.7%)
 - Higher rate of meconium in ANT group
 - No difference noted in neonatal morbidity
 - Apgars, pH
 - Resuscitation, NICU admit, vent, O2
 - Seizures, sepsis, polycythemia

Elective Induction of Labor

- IOL vs. Expt Mgmt 41 wks and less
 - Meta-analysis, 9 prospective RCTs
- Fewer CD in EIOL – 1.17 (95%CI: 1.06-1.29)

Induction of Labor

- IOL vs. Expt Mgmt 41 wks and beyond
 - Sanchez-Ramos et al, OB Gyn, 2003
 - Meta-analysis, 16 prospective RCTs

Mode of delivery

- IOL vs Expt Mgmt
 - CS - 20.1% vs. 22.0%: OR = 0.78 – 0.99
 - Mec – 22% vs. 27%: OR = 0.49 – 0.88
 - PMR – 0.09% vs. 0.33%: OR = 0.14 – 1.18
 - PMR = perinatal mortality rate

Elective Induction of Labor

- IOL vs. Expt Mgmt 41 wks and less
 - Meta-analysis, 16 prospective RCTs
- Fewer CD in EIOL – 1.17 (95%CI: 1.06-1.29)

Meconium

- Less in EIOL - RR 1.67 (95%CI: 1.23-2.26)
Induction of Labor - CS

- Retrospective studies - more CS with IOL
- Prospective studies – fewer CS or no diff
- What are the groups being compared?
 - IOL at 39 weeks vs. Spont labor at 39 weeks
 - However, in RCT:
 - IOL at 39 weeks GA vs.
 - Patients beyond 39 weeks GA

Induction of Labor Compared to Delivery at a Greater Gestational Age

<table>
<thead>
<tr>
<th>Week of Induction</th>
<th>IOL CD</th>
<th>Expt mgmt CD</th>
<th>AOR* (95% CI)</th>
<th>Spont. Labor CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 weeks</td>
<td>11.9%</td>
<td>13.3%</td>
<td>1.80 (1.29-2.53)</td>
<td>7.0%</td>
</tr>
<tr>
<td>39 weeks</td>
<td>14.3%</td>
<td>15.0%</td>
<td>1.39 (1.08-1.80)</td>
<td>9.1%</td>
</tr>
<tr>
<td>40 weeks</td>
<td>20.4%</td>
<td>19.0%</td>
<td>1.24 (1.27-1.62)</td>
<td>10.9%</td>
</tr>
<tr>
<td>41 weeks</td>
<td>24.3%</td>
<td>26.0%</td>
<td>1.26 (0.99-1.61)</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

A. Comparison by week of gestation

<table>
<thead>
<tr>
<th>IOL</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>No IOL</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
</tbody>
</table>

B. Comparison of IOL and Expectant Management

Cochrane DB – Gülmezoglu AM et al, 2006

- IOL < 41 weeks had lower CS rate
- RR 0.58; 95% CI 0.34 to 0.99

IOL < 41 wks GA

- Cochrane DB – Gülmezoglu AM et al, 2006
- IOL < 41 weeks had lower CS rate
- RR 0.58; 95% CI 0.34 to 0.99

Induction of Labor < 41 wks GA

- Table: Induction of Labor Compared to Delivery at a Greater Gestational Age

Induction of Labor - CS

<table>
<thead>
<tr>
<th>Week of Induction</th>
<th>IOL CD</th>
<th>Expt mgmt CD</th>
<th>AOR* (95% CI)</th>
<th>Spont. Labor CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 weeks</td>
<td>11.9%</td>
<td>13.3%</td>
<td>1.80 (1.29-2.53)</td>
<td>7.0%</td>
</tr>
<tr>
<td>39 weeks</td>
<td>14.3%</td>
<td>15.0%</td>
<td>1.39 (1.08-1.80)</td>
<td>9.1%</td>
</tr>
<tr>
<td>40 weeks</td>
<td>20.4%</td>
<td>19.0%</td>
<td>1.24 (1.27-1.62)</td>
<td>10.9%</td>
</tr>
<tr>
<td>41 weeks</td>
<td>24.3%</td>
<td>26.0%</td>
<td>1.26 (0.99-1.61)</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

A. Comparison by week of gestation

<table>
<thead>
<tr>
<th>IOL</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>No IOL</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
</tbody>
</table>

B. Comparison of IOL and Expectant Management

Caughey et al, AJOG 2006;195:700-5

*controlling for method of induction, maternal age, parity, education, BMI, race/ethnicity, and epidural.
Elective IOL - CS

- National data, 2003

<table>
<thead>
<tr>
<th>Week of Induction</th>
<th>IOL CD</th>
<th>Expt mgmt CD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 weeks</td>
<td>21.1%</td>
<td>23.3%</td>
<td><0.001</td>
</tr>
<tr>
<td>39 weeks</td>
<td>22.3%</td>
<td>23.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>40 weeks</td>
<td>24.2%</td>
<td>25.1%</td>
<td><0.001</td>
</tr>
<tr>
<td>41 weeks</td>
<td>27.0%</td>
<td>24.7%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Induction of Labor

- Another Approach – Selective/Preventive
 - Active mgmt of risk in pregnancy at term
 - Considers risk of:
 - CPD
 - IUGR / Fetal intolerance of labor
 - Earlier induction for higher risk patients

AMOR-IPAT

- CPD
 - BMI >29
 - Ht < 62”
 - Wt gain > 30 lbs
 - GDM
 - DM
 - H/o macrosomia
- UPI
 - Htn
 - GDM
 - DM
 - MSAFP
 - Cigarettes
 - AMA
- Add up risk factors and subtract from 41 weeks GA

Nicholson et al, AJOG, 2004;191:1516-28
AMOR-IPAT

- Median GA: Standard – 40.1; AMOR – 38.9
- Standard – 26% IOL – 17% C/S rate
- AMOR-IPAT – 63% IOL – 4% C/S rate
- Also AMOR-IPAT had less:
 - 3rd/4th degree lacs,
 - PPH
 - Macrosomia
- Nonrandomized
- Both multips and nullips

Nicholson et al, AJOG, 2004;191:1516-28

AMOR IPAT - RCT

<table>
<thead>
<tr>
<th>Cesarean Delivery</th>
<th>Assisted Vaginal</th>
<th>NICU Admission</th>
<th>APGAR@ 1min < 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed Group</td>
<td>10.3%*</td>
<td>5.2%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Control Group</td>
<td>14.9%**</td>
<td>7.5%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Odds ratio</td>
<td>0.61</td>
<td>0.69</td>
<td>0.21</td>
</tr>
<tr>
<td>p-value</td>
<td>0.20</td>
<td>0.43</td>
<td>0.05</td>
</tr>
</tbody>
</table>

AMOR IPAT Prospective RCT. Nicholson JM, et al. AJOG, 2007

Elective IOL - Costs

- Induction of labor associated with higher costs
 - Bost, AJOG - 2003
 - Allen, AJOG - 2005
 - Allen, OB Gyn - 2006

Elective IOL – Cost effectiveness

- Cost-effectiveness
 - Not cheapest plan
 - Cost per outcome “worth it”
 - Threshold - $100,000/QALY
- IOL at 41 wks - $6,938 per QALY*
- IOL at 40 wks - $71,735 per QALY**
 - Least cost-effective with favorable cvx

*Kaimal et al. AJOG, 2006 abs **Kaimal et al. AJOG, 2007 abs
Maternal and neonatal outcomes of elective induction of labor.
Back to Case

• 27 yo G1P0 at 40 1/7 requesting IOL
 • Normal pregnancy

• Expt Mgmt & ANT vs. IOL
 • Neonatal outcomes
 • Maternal outcomes
 • Cesarean Delivery

• What is the pt’s understanding of R/B

Case

• 27 yo G1P0 at 40 1/7 requesting IOL
 • Normal pregnancy
 • 5’ 5”, BMI 23, No AMOR-IPAT RFs
 • Tired of being pregnant
 • Based on evidence:
 • IOL at 40 weeks GA as compared to ANT
 • From recent Cochrane meta – lower CD rate
 • No demonstrated perinatal mortality difference
 • Not standard of care

Elective Induction of Labor

• No consistently demonstrated increased risks:
 • Cesarean delivery
 • Infection
 • Neonatal outcomes

• Perhaps
 • Decreased risk of CD
 • In particular subgroups
 • Decreased IUFD / perinatal mortality

• Increased costs
• Offer vs. Concede to requests
• Thank You

Debate?

• Elective IOL < 39 weeks of GA
• Elective IOL at 41 weeks of GA
• Elective IOL at 39-40 weeks of GA

Case Question

27 yo G1P0 at 38 1/7 requesting IOL
Who would offer EIOL in this setting?

A. Yes
B. No

98%
2%

Case Question

27 yo G1P0 at 40 1/7 requesting IOL
Who would offer EIOL in this setting?

A. Yes
B. No

82%
18%
Causes and consequences of labor induction

William Grobman, MD, MBA
Associate Professor
Department of Obstetrics and Gynecology
Institute for Healthcare Studies
Northwestern University
San Francisco
June, 2010

Disclosures

• None

Outline

• Trends in labor induction
• Etiologies of the trends
• Maternal and neonatal outcomes related to labor induction

Definitions

• Term gestation: at least 37 weeks
 – 37-39 weeks
 – After 39 weeks
• Labor induction: iatrogenic initiation of labor prior to contractions with cervical change
• Elective labor induction: Induction without established medical indication
TRENDS

Gestational age at delivery

- Trend to earlier deliveries among term singleton gestations
 - Percentage of births delivered at 40 weeks and greater has declined 14 percent since 2000, and 29 percent since 1990
 - In contrast, the percentage of births delivered at 37–39 weeks has increased 10 and 31 percent over these time periods

Trends in IOL

 - IOL rate (singleton) was 22.8 percent
 - Rate has more than doubled since 1990

Induction of labor at term

Similar trend for elective induction as well as medical induction

Murthy, Grobman, Lee, Holl 2009
Tita et al, NEJM 2009

- MFMU registry
- 13,258 women who underwent an elective cesarean at term
 - 6.3% during the 37th week
 - 29.5% during the 38th week

Clark et al, AJOG 2009

- 15 months, 27 hospitals
- 14,955 deliveries
 - 6562 (44%) were planned
 - 4645 (31%) were elective
 - 2794 of these were labor inductions
 » 112 (4%) during 37th week
 » 678 (24%) during 38th week

Up until now…

- Induction is rising
- Elective induction is rising at term
 - Not relegated to > 39 weeks

Labor induction: Outcomes

- Properly used, overall benefit for mother and child
 - Woman at 35 weeks with severe preeclampsia

 Proper use = Benefits > Risks
Risks

- Neonatal
 - 37-38 6/7 weeks of gestation
 - ≥ 39 weeks
- Maternal
 - Gestational age independent

What about neonatal outcome associated with elective delivery after 37 weeks?

- Tita et al, NEJM 2009

What about neonatal outcome associated with elective delivery after 37 weeks?

- Clark et al, AJOG 2009

Induction and maternal outcome: cesarean delivery

- Retrospective cohort studies
 - Induction of labor prior to 41 weeks of gestation is associated with an approximately 2-fold higher risk of cesarean delivery in nulliparous women

What about elective induction?
Elective induction of labor in nulliparas

Vahratian et al, 2005

- Retrospective Cohort (37-40 6/7 weeks)
 - 143 nullips EIOL with cervical ripening
 - 286 nullips EIOL without cervical ripening
 - 1771 nullips in spontaneous labor

Induction and multiparas

- Studies inconsistent and most underpowered
- Yeast et al, AJOG 1999
 - Cesarean rate 3.3% after spontaneous labor
 - OR 3.5 (confidence interval 2.8-4.2) with an unripe cervix
 - OR 1.3 (confidence interval 1.0-1.7) with a favorable cervix
 - OR 2.5 (confidence interval 2.1-3.0) for cesarean for FTP

Induction and multiparas

- Battista et al, AJOG 2007
 - Elective induction vs. spontaneous labor
 - Cesarean delivery
 - After oxytocin only: OR 1.3 (1.0 – 1.7)
 - After ripening: OR 2.3 (1.1 – 5.1)
 - >12 hours on L&D
 - After oxytocin only: OR 1.6 (1.3 – 2.0)
 - After ripening: OR 6.8 (4.1 – 11.2)
IOL and resource use

- Increased time on L&D associated with IOL
 - Maslow and Sweeney, 2000 (mixed parity)
 - Clark et al, 2009 (nullips and multips separately analyzed)
- Increased resource use in general
 - Seyb et al, 1999

$$ \text{\$\$\$} \sim 15\text{-}25\%$$

“Control group” problem

<table>
<thead>
<tr>
<th>Induced labor</th>
<th>Induced labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>vs.</td>
<td>vs.</td>
</tr>
<tr>
<td>Spontaneous labor</td>
<td>Expectant management</td>
</tr>
</tbody>
</table>

Kaufman, Bailit, Grobman 2002

Kaufman, Bailit, Grobman 2002
Population level data

- 20 Sutter Health birthing hospitals
- All nullip term singleton births, 2001-2003

Main et al, AJOG 2006

Institutional change

- Magee-Women’s
 - Enforced guidelines
 - No elective induction prior to 39 weeks
 - No elective induction that used ripening agent

Fisch et al, 2009

Institutional change

- Intermountain Health System
 - Provider education
 - Patient education
 - Barriers to practice
 - Monitoring and feedback

Oshiro et al, 2009

Conclusions

- Labor induction has been rising
- No good evidence that changing threshold has improved outcomes
- Evidence of both neonatal and maternal morbidity from induction under certain circumstances
- Beginning of systems-based approaches