Laser Applications in Laryngeal Surgery

--Charles N. Ford, MD

Nov 2009

General Laser Principles

- Laser Effects on Tissue
 - Photothermal
 - Photochemical
 - Photomechanical

- Laser Therapeutic Goal
 - Direct These Energies to Pathological Targets
 - Spare Adjacent Normal Tissues

Lasers Useful in Laryngology

- CO₂ (10,600 nm)
 - Microspot Technology
 - Defocused Applications
 - Wave-Guiding System

- Thulium 2-micron (2013 nm)
 - Cut/Coagulate (CO₂ + YAG)
 - Bendable Fiber Delivery

- Photoangiolytic Lasers
 - Pulsed Dye Laser (585 nm)
 - KTP Continuous Wave and Pulsed (532 nm)

CO₂ Laser Applications

- Precision Cutting
 - Limited Hemostasis
 - Focused Thermal Effect on Surface
 - Pulsed to Limit Char

- Precision Ablation
 - Defocused Laser
 - Limited Depth
 - Ablation w Sparing Lamina Propria
OmniGuide Photonic Bandgap Fiber Technology

- Addresses CO2 Laser Limitation
 - Enhanced Exposure Via Flexible Fiber
 - Improved Cutting Ability for Resections
- Wave-guiding System
 - Reflective Dielectric Mirrors
 - Cladding
 - Hollow Core

Versatility/Mechanical Advantage Fiber Delivery Approach

- In-Office Application via Flexible Scope
- In O.R. w 30° Telescope
- 70 y.o. With Hx SCC
 - Recurrent AC Leukoplakia
 - Unable to Exposure AC w Laryngoscope

Lasers Useful in Laryngology

- CO2 (10,600 nm)
 - Micropoint Technology
 - Defocused Applications
 - Wave-Guiding System
- Thulium 2-micron (2013nm)
 - Nd:YAG & Holmium Features
- Photoangiolytic Lasers
 - Pulsed Dye Laser (585 nm)
 - KTP Continuous Wave and Pulsed (532 nm)

Thulium Laser Verrucous Ca

- 2013nm > Absorbed/Water
- Cutting-Ablation Like CO2
- Cutting-Hemostasis Like Nd:YAG w Less Penetration
- Advantages in Large Resections
 - Excellent Hemostasis
 - Flexible Fiber for Tangential Cuts
 - Contact Mode Efficiency
Lasers Useful in Laryngology

- **CO2** (10,600 nm)
 - Microspot Technology
 - Defocused Applications
 - Wave-Guiding System
- **Thulium 2-micron** (2013 nm)
 - CO2, Nd:YAG, & Holmium Features
- **Photoangiolytic Lasers**
 - Pulsed Dye Laser (585 nm)
 - KTP Continuous Wave and Pulsed (532 nm)

Angiolytic Lasers
Prototype: 585-nm Pulsed Dye Laser

- **Selective Absorption**
 - OxyHgb → Intra-luminal Energy Delivery
 - Hemostasis
 - Vascular Lesions & Vascular-Dependant Neoplasms
- **Epithelial Effects**
 - Alters Epithelial Cell
 - Cleaves From BMZ
- **ECM, Collagen Effects**
 - Scar Sulcus Vocalis
 - Reinke’s Edema

PDL Mechanism of Action on Vascular Lesions (eg. RRP)

- Direct Energy to Lesion
 - Intravascular Coagulation >"Photoangiolysis" of Subepithelial Microvasculature (Blanching)
 - 585nm PDL -Oxyhemoglobin is Chromophore
- Spares Adjacent Tissue (Pulsed Delivery Allows Adequate Thermal Relaxation Time & Recovery Non-Target Tissues)
 - Epithelial Surface Sparing (eg. Ant. Commissure)
 - Prevents Scarring of Lamina Propria
 - Selective Ablation Vascular Lesion (x=Angiogenesis)

Vascular Ectasia & Varicities
Vascular Lesions at Anterior Commissure (RRP)

Theory: More Efficient Selective Vascular Ablation (Photoangiolyis) Will Limit Vessel Rupture & Extravasation

Angiolytic Lasers
Prototype: 585-nm Pulsed Dye Laser

- Selective Absorption
 - OxyHgb → Intra-luminal
 - Energy Delivery
 - Hemostasis
 - Vascular Lesions & Vascular-Dependant Neoplasms
- Epithelial Effects
 - Alters Epithelial Cell
 - Cleaves From BMZ
- ECM, Collagen Effects
 - Scar Sulcus Vocalis
 - Reinke’s Edema
PDL Clinical Effect on Dysplastic Epithelium

- 59 y.o. SCCa L TVF at 2 yrs. s/p RT
- c/o Progressive Hoarseness
- In Office Biopsy: Mild-Dysplasia
- Compliant Patient for Careful f/u

Pre- & 4-Wks Post in-Office PDL

PDL Lyses BMZ Linking Proteins

Clinical Leukoplakia

Angiolytic Lasers
Prototype: 585-nm Pulsed Dye Laser

- Selective Absorption OxyHgb → Intra-luminal Energy Delivery
 - Hemostasis
 - Vascular Lesions & Vascular-Dependant Neoplasms
- Epithelial Effects
 - Alters Epithelial Cell
 - Cleaves From BMZ
- ECM, Collagen Effects
 - Scar Sulus Vocalis
 - Reinke’s Edema
Use of PDL in Treatment of VF Scar

• N = 11 Scarred VFs s/p Radiation
 Hemilaryngectomy, or Phonosurgery
• Favorable Results w PDL at 6 Months
 – 10/11 Subjectively Better, 1 Same
 – VHI Improved From 48 to 36 (p < 0.05)
 – Improvement in:
 • Phonatory Flow Rate, Jitter, Shimmer, HNR
 • Stroboscopic Exam (Trained, Blinded Judges)

PDL Mechanism of Action on
Scar/Collagen, BMZ, Epithelium, ECM

PDL: Addresses Vocal Fold Pathology w
Preservation of ECM Structure & Function

• Stimulates Collagen Remodeling (Dermatology Reports: Keloids, Hypertrophic scars, Striae)
• Theories:
 – PDL-Induced Tissue Hypoxia > Collagenesis from Decreased Microvascular Perfusion
 – Thermal Effect > Dissociation Disulfide Bonds > Collagen Realignment
 – Induced Mast Cell Response > Interleukins & Other Immune Factors Altering Collagen Metabolism

PDL-Induced Inflammatory Response in VFs.
Lin Y, et al. Lasers In Surgery & Medicine, 2009

• Studied PDL Effect on Normal in vivo &
 Cultured VF Fibroblasts (rat model)
 – Altered Inflammatory Cytokine and
 Procollagen/Collagenase Expression
 • Relevant to Management of Scar and SV
 – Induced Inflammatory Repair Process in vivo
 While Preserving Normal Tissue Morphology
 • Relevant to Application in Reinke’s Edema
PDL Single Treatment Reike’s Edema

Pre-operative Exam 2-months Post-operative

Combining PDL and Thulium

Summary

USEFUL LASERS
• CO2 (10,600 nm)
 – Microspot Technology
 – Defocused Applications
 – Wave-Guiding System
• Thulium 2-micron (2013nm)
 – CO2, Nd:YAG, & Homium Features
• Photoangiolytic Lasers
 – Pulsed Dye Laser (585 nm)
 – KTP Continuous Wave and Pulsed (532 nm)

USES OF LASERS
• Direct Effects
 – Incision/Excision
 – Ablation
 – Hemostasis
• Indirect Effects on Lesions
 – Angiolyis
 • Vascular Lesions
 • Vascular-Dependent Lesions
 – Epithelial
 • Leukoplakia > Dysplasia
 • SCC
 – Extracellular Matrix
 • Reinke’s
 • Collagen
 • Scar
 • Sulcus vocalis