Endoscopic Management of Subglottic Stenosis: Diagnosis and Surgical Techniques

Mark S. Courey, MD
Professor, UCSF – Department of OHNS
Director, Division of Laryngology

OHNS Website: http://ohns.ucsf.edu

Airway Obstruction

- Supraglottis
- Glottis
- Subglottis
- Trachea

OHNS Website: http://ohns.ucsf.edu
Unifying Concepts in Endoscopic Management

1. **Incise** soft tissue stenosis/scar
 - Do not excise the stenosis

2. **Avoid** circumferential disruption of the mucosal surface

3. Evaluate the degree of cartilage involvement
 - If the supporting airway cartilage is involved in the stenosis, then endoscopic techniques are unlikely to be successful

Predictive Factors of Success in Endoscopic Management

1. Incomplete circumferential involvement

2. Scarring shorter than 1 cm in vertical dimension

3. Tracheomalacia or loss of cartilage

4. History of bacterial infection associated with tracheotomy

5. PGS with arytenoid fixation

Etiology

- Iatrogenic – prolonged intubation for mechanical ventilation
- External trauma
- Idiopathic

Adult Subglottic Stenosis

- Etiology
 - Autoimmune – Wegener’s
 - Idiopathic
- NO cartilage involvement
- Surgical Technique – Endoscopic Laser Radial Incisions with Dilation and Mytomycin c Application
- Average symptom free interval 9 months

Roediger FC, Orloff LA, Courey MS. Laryngoscope. 2008 Sep;118(9):1542-6
Evaluation/Management

- Office evaluation and examination
 1. Thorough history – suspect etiology
 - Prior intubation
 - Prior surgery
 - GERD symptoms
 - Autoimmune disorders
 - Nasal crusting
 - Recurrent sinusitis
 2. Careful endoscopic examination

Subglottis
Evaluation/Management

- Consider high resolution CT with 3-d reconstruction
 - Underestimates amount of cartilage involvement
 - Standard CT evaluation 5 mm axial images
 - High resolution CT 1 mm axial images
 - Virtual endoscopy
Evaluation/Management

Staging Endoscopy

- Primary purpose
 1. Stage exact area of stenosis
 2. Define position and degree of cartilage involvement

- Be prepared to treat

- Anesthetic technique – Jet ventilation
 - Supraglottic
 - Subglottic

Preoperative conversation with patient: risks and desires
 - Risks
 - Airway obstruction and death
 - Need for tracheotomy
Evaluation/Management

Staging Endoscopy

- Equipment – Operative Endoscopes

Laryngoscopes and Microsubglottoscopes Bronchoscopes

Microsubglottoscopy

- Binocular visualization with the operating microscope
- Bimanual manipulation
- Used with Jet Ventilation
- Allows treatment of lesions for 5 to 7 cm below TVF
- Works well with the CO₂ laser
Laryngoscopes and Microsubglottiscopes

OHNS Website: http://ohns.ucsf.edu
Endoscopic Management of Airway Obstruction

- Enhanced by the addition of the surgical laser to our armamentarium

- CO₂ Laser
 - Stuart Strong, MD
 - Geza Jako, MD
 - Wave guide delivery systems

- Nd:YAG
 - Fiber laser delivery systems

Ablation

Computerized Pattern Generators

- Ablates 250 micron wide swath of tissue

Incision
Modes of Laser Delivery

1. **Continuous**
 - Laser medium is excited with a constant source of power
 - Provides a constant output of energy

2. **Pulsed**
 - Laser medium is excited with a flash-lamp or an intermittent source of power
 - Provides short “pulsed” output of energy in bursts
 - Tissue can cool between bursts of energy
 - Thermal Relaxation Time of the tissue
CO₂ Laser - Continuous Delivery Mode

- In the tissue surrounding the impact zone, energy is absorbed at subablative tissue thresholds

![Image of tissue with labels: Ablation Crater, Coagulum, Subablatative Injury Zone]

Oral Canine Mucosa 7 days after injury with a continuous mode CO₂ laser at 4 watts for 0.1 second

Laser - Pulsed Delivery Mode

- Allows tissue cooling between laser impacts
- Reduces subablative injury
 - Thermal Relaxation
 - Time required for a target structure to dissipate 50% of the energy absorbed to surrounding tissue
 - Roughly equal to the square of the diameter of the target structure
Laser - Pulsed Delivery Mode

Thermal Relaxation Time

Thermal Damage

Ability to Delivery Laser Energy in a Pulsed Mode

Reduces Thermal Damage

Continuous Wave

Pulsed Structure Wave

OHNS Website: http://ohns.ucsf.edu
Surgical Precision
Enhanced by accurate delivery of laser energy

1. Selective phothermolysis – choose a desired chromophore
2. Pulse the laser – thermal relaxation
3. Repeat/Delay or Shuttered laser delivery
 - Laser output in either a continuous mode or a pulsed mode is allowed for a tenth of a second
 - The laser is turned off after a few tenths of a second
 - Allows the surgeon to move the laser beam to avoid:
 1. Drilling into tissue
 2. Overlap of ablation sites

Settings for Laser Shuttering
Repeat/Delay

- On time – 0.1 second
- Off time – 0.3 to 0.5 seconds
 - Repeat delay
Shutter vs. Non-Shutter

Laser energy is delivered for 0.1 to 0.2 seconds

Laser energy is delivered without delay

- Can be accomplished with all laser wavelengths
 - CO2
 - KTP
 - PDL

- Reduces error by allowing the operator to move the laser beam

- Avoids "drilling" into tissue or excessively delivering laser to one area

[OHNS Website: http://ohns.ucsf.edu]
Surgical Precision

Enhanced by accurate delivery of laser energy

1. Selective photothermolysis – choose a desired chromophore
2. Pulse the laser – thermal relaxation
3. Repeat/Delay or Shuttered laser delivery
4. Pattern generators
 - Computerized/Mechanical
 - CO₂ laser only

Pattern Generators for the CO₂ Laser

- Mechanically move the laser beam
 - More rapidly than with human movement
 - Minimize overlap inherent with human movement

- Patterns
 - Linear
 - Geometric area
 - Circles
 - Boxes

- Used in a shuttered or non-shuttered mode
- Combined with pulsed delivery systems
Digital Acublade™

- CO₂ laser
- Ultrapulse™ laser mode
 - Reduces laser on time
 - Limits thermal damage
- Computerized Pattern Generator
 - Moves beam more efficiently than human hand
 - Reduces human error

OHNS Website: http://ohns.ucsf.edu
Surgery with Pattern Generators

- Evaluation of precision – canine model
 - Direction of incision
 - Depth of incision/ablation
 - Thermal damage

- CPG incisions vs. hand made incisions
 CPG incisions were more uniform
 - Depth of incision
 - Thermal damage

Surgery with Pattern Generators

- Evaluation of operative time with prototype scanner
 - Multiple surgeons
 - Short learning curve

- Reduction in operative time by 37%
 - $p < 0.001$

- Outcomes voice and airway not significantly different
Subglottic Stenosis

Etiology
- Idiopathic
- Wegener’s
- Prior intubation

Involvement of Extra-Esophageal Reflux Disease

Subglottic Stenosis – Management Techniques

- Tracheotomy
 - Best avoided due to increase bacterial count in trachea
- Reflux treatment
 - Aggressive BID therapy
 - Consider surgical intervention – Nissen if LES pH probe positive
- Endoscopic evaluation and POTENTIAL treatment
 - Laser incisions – Mitomycin C application – Dilation
- Mitomycin C
 - Increase interval between treatment 4.9 months to 23 months

OHNS Website: http://ohns.ucsf.edu
Subglottic Stenosis – Management Techniques

Surgical Technique – Endoscopic Evaluation

- Telescopic Bronchoscopy
- Evaluate length and degree of stenosis
- Do not need to make airway normal
 - Robert Ossoff - “It’s a game of millimeters”
 - Rationale
 - Flow ~ \(r^4 \)
 - Minimal increases in radius improve flow

Subglottic Stenosis

Surgical Technique

- Caution !!
 - Avoid excess exposure/injury to cartilage
 - Avoid injury to vocal folds
- Mitomycin c application
 - 0.4 mg per ml
 - Topical on cottonoid – 3 minutes
 - Wash away excess
 - May lead to crusting
 - Delays re-epithelialization
Subglottic Stenosis – Case Example

- **Office evaluation**
 - Patient history of symptoms
 - Rapidity of onset
 - Degree of DOE
 - Indirect endoscopy

- **Studies**
 - PFT's
 - Fixed extrathoracic obstruction
 - Flattening of the inspiratory and expiratory limbs
 - Peak inspiratory flow should be greater than 1.5 liters
 - CT?
Subglottic Stenosis – Case Example

- CT?

Subglottic Stenosis – Case Example

Surgical Technique

- Exposure
 - Microsubglottiscope
- Jet Ventilation during anesthesia
- Radial incisions
 - To laser or not to laser
- Dilation after radial incision
 - Rigid dilators
 - Bronchoscopes
 - Balloon dilators
Subgottic Stenosis

Preoperative

Postoperative

Laser Radial Incisions for Tracheal Stenosis
Laser Radial Incisions for Tracheal Stenosis

Conclusions and Future Directions

- Endoscopic management principles are well established
- Often alleviates stenosis without need for more aggressive open intervention – Do not need to make airway normal
- CO₂ laser enhances ability to perform most of these endoscopic procedures
Thank You

[Image of four people in a desert setting]