Early Glottic Cancer

Mark S. Courey, MD
Professor, UCSF – Department of OHNS
Director, Division of Laryngology

Definition

- High-grade dysplasia
- Carcinoma in situ
- Micro-invasive carcinoma
- Invasive carcinoma
 - One anatomical sub-site
 - T1a one vocal fold
 - T1b both vocal folds
 - Two anatomical sub-sites
 - T2
Clinical Presentation

T1

T2

Clinical Presentation versus Histologic Presentation

≠
History of Treatment

- Transoral excision of an obstructing lesion
 - Horace Green – 1850 unrepeatable and fell into disrepute

- Laryngofissure – did not become accepted until early 20th century
 - Problems with knowledge of laryngeal anatomy
 - Disease extent
 - Early pioneers
 - Gordon Buck – 1851 reported a 15 month survival
 - Jacob Solis-Cohen – 1867 20 year survival
History of Treatment

- Total Laryngectomy
 - Difficult due to lack of adequate anesthesia
 - 50% mortality rate of surgery
 - Billroth 1873
 - Subglottic tumor
 - 7 month survival

History of Treatment

- Hemilaryngectomy
 - Initially reported by Billroth and Gluck – 1870’s
 - Divided into
 - Vertical
 - Horizontal
 - Inability to adequately reconstruct
 - Aspiration
 - Poor airway
History of Treatment

- Conservation laryngeal surgery
 - Tucker and Smith – 1960
 - Studied whole organ section to determine spread of disease
 - Anatomic sections of larynx
 - Supracricoid laryngectomy – Piquet 1974

- Radiation therapy
 - Finzi – 1909
 - Coutard at the Curie Foundation in Paris
 - 1940 – 1980 Radiation preferred to surgery
 - Less morbid
 - Better Voice and Swallowing Outcome than obtained with open surgical techniques
History of Treatment

- **Rebirth of Transoral**
 - Historical aspect
 - Greene – 1850
 - Fraenkel – 1886
 - Scalco – 1960
 - Combined suspension laryngoscopy with the microscope
 - Jako and Strong – 1972
 - Introduction of the CO2 laser
 - Very limited tumors
 - Steiner and Ambrosch – 1980’s to present
 - Demonstrating equal cure rates to open resection and RT

Treatment Options

1. Open Surgical Excision
 - Cure Rates of 90-95%
2. Radiation Therapy
3. Endoscopic Excisions
Challenges in Treatment and Rehabilitation

1. Cure/control rate
2. Quality of Life
 - Voice
 - Swallowing
3. Options for further treatment
 - Recurrent disease
 - Metachronous disease
4. Fair assessment of surgical skills

How Did We Get Here?
Treatment Options in View of Historical Developments

- Open Resection
 - First viable treatment option
 - High morbidity
- Radiation Therapy
 - Gained a strong hold 1940’s to 80’s
 - Less morbid than open surgery
- Endoscopic Resection
 - Relies on facility with endoscopic techniques
 - Not always part of training program
Endoscopic Management

- Lagged behind other treatment options
- Requires facility with endoscopic techniques
 - Ability to obtain exposure
 - Surgical skill
 - Familiarity with endoscopic equipment
 - Cold steel
 - Lasers
 - CO2
 - KTP/PDL

Cure Rate

- Radiation therapy
- Open partial laryngectomy
- Endoscopic excision
 - Konig, Bockmuhl, Haake – Berlin, Germany
 - Compared open resection to endoscopic resection
 - Equal cure rate T1 97%, T2 83%
Patient Needs/Morbidity of Treatment

- Radiation therapy
- Open partial laryngectomy
- Endoscopic excision
 - Rosier et al Brussels, Belgium
 - T1 cancer 106 patients 3 groups (RT, Endo, Open)
 - Perceptual and self voice ratings
 - Same for RT and endo
 - Significantly worse for open

Results After Endoscopic Resection

- Survival
 - Eckel et al Annals 1992
 - Comparable with other modalities of treatment

- Voice Outcome – How do we choose endoscopic management or RT?
 - Sjogren et al Archives Otolaryngology Head Neck 2008
 - Comparable or better than other modalities
 - Vilaseca et al Head and Neck 2008
 - Dependent on amount of tissue removed
 - Used ELS classification system
Voice Outcome
RT vs Endoscopic Resection

- Voice quality is dependent on the amount of vocal fold tissue removed
 - Vilaseca et al Head and Neck 30:43-49

- Goor et al 2007 The Netherlands
 - Patients who underwent type 1 or type 2 cordectomy according to the European classification system had similar voice outcome compared to patients treated with RT
 - Patients with more infiltrative tumors were sent for RT

Spectrum of T1 Disease
Limitations with Endoscopic Resection

- Surgeon’s abilities
- Patient desires for
 - Voice outcome
 - Length of treatment
- Tumors requiring muscular resection will result in significant voice change postoperatively

Local Recurrence after CO2 Laser Cordectomy for Early Glottic CA

- Predictive failures of local recurrence for TIS T1 and T2
- Retrospective review of 110 patients treated at a single institution 1990 to 2000
- Overall cure 97% 85% and 90% respectively
- Predictive factors of failure
 - Muscle invasion
 - Subglottic involvement

- Motuaire, Francois, Wiel and Chevalier – Lille, France
Laryngeal Function for Voice after T2
Guiding Your Patient Through Options of Treatment
What to Keep in Mind

- Radiation therapy
 - 5 to 7 weeks
 - Good voice
 - May interfere with further treatment
 - Recurrence
 - Second primary tumors

- Open partial laryngectomy
 - 5 to 7 days hospitalization
 - Poor Voice Outcome
 - May have alterations in swallowing
Guiding Your Patient Through Options of Treatment

What to Keep in Mind

- Endoscopic excision
 - Outpatient or 23 hour observation
 - What are your surgical abilities
 - If muscle is resected to obtain free margins, then voice outcome is unpredictable.

Surgical Management

- Open resection
- Endoscopic resection
 - Cold steel
 - Laser resection
 - CO2 must be PULSED and SHUTTERED
 - Wave guide
 - New lasers without proven advantage
 - PDL
 - Pulsed KTP

OHNS Website: http://ohns.ucsf.edu
Endoscopic excision of laryngeal cancers existed long before laser came into use

- 19th century, endoscopic excision of vocal fold cancer
 - Elsberg 1886, Fraenkel 1886, 1887, Schnitzler 1888
- 20th century
 - Lynch 1915, 1920
 - Kleinsasser
 - Lillie and De Santo, 1973

Suspension Microlaryngoscopy

Fulcrum

Suspension
Suspension Microlaryngoscopy

Microlaryngeal Instrumentation

- Knives
 - Curved sickle blades
 - Universal handle
 - Disposable
Microlaryngeal Instrumentation

- **Scissors**
 - 2 mm
 - Multiple angles
 - Curved and straight

- **Flap elevators**
 - Universal handle
 - Multiple sizes
 - Multiple angles
 - Sharp and blunt
Microlaryngeal Instrumentation

- **Grasping forceps**
 - Atraumatic tissue retraction

![Grasping forceps](image)

- **Cup forceps**
 - 1 mm size
 - Multiple angles
 - Straight
 - Up
 - Left
 - Right

![Cup forceps](image)
Microlaryngeal Instrumentation

- Suctions
 - 3 to 7 french
 - Open and velvet eye
 - Excellent for retraction

Endoscopic Excision Techniques for Glottal Cancers

- Cold knife
 - Microflap
 - Excellent for small lesion
 - Allows identification of deep involvement

- Laser
 - Hemostasis
 - Excellent tissue response
 - Operative time reduced
ELS Classification System of Endoscopic Resection

- Remacle et al 2000
- System to evaluate results based on precise amount of tissue excised

Subepithelial cordectomy (Type I)

- DIAGNOSTIC AND THERAPEUTIC
- CHRONIC AND HYPERTROPHIC LARYNGITIS
Subepithelial cordectomy (Type I)

Subligamental cordectomy (Type II)

- DIAGNOSTIC AND THERAPEUTIC
- DOUBTFUL RECURRENCE OF KERATOSIS
- MICROINVASIVE CARCINOMA
Subligamental cordectomy (Type II)

Transmuscular cordectomy (Type III)

Transmuscular cordectomy (Type IV)
Extended Cordectomy

- **Type Va**
- **Type Vb**

Problems with Tumor Classification

- T1 can range from exophytic to infiltrative
- Outcomes are best appreciated by the type of resection required to excise the tumor
Patient Example

- 47 year old non-smoking male
- Dysphonic for several months
- Biopsy by referring OHNS positive for invasive squamous cell CA
Patient Example

- 50 year old male
- 4 months history of dysphonia
- Smokes pot daily
- Alcohol daily
Transmuscular cordectomy (type IV)

Transmuscular cordectomy (Type Va)
Endoscopic Surgical Excision

- Salvage after failed RT – 65%
 - Motamed, Laccourreye and Bradley, Laryngoscope 2006
 - Meta-analysis
 - Studies with greater than
 - 10 patients
 - 24 month follow-up
 - Conservation laryngeal surgery is safe and effective for treatment of recurrent localized disease after radiotherapy for early stage laryngeal cancer
Endoscopic Resection after Failed RT

- Literature
 - Steiner et al 2004
 - 21 of 34 (71%) patients cured with one OR MORE endoscopic procedures
 - Goor et al 2007
 - 6 of 7 (83%) patients with one procedure
 - Mortuaire et al 2006
 - 84 to 90%

- Interpretation
 - Possible but not easy
 - Requires close follow-up
 - Use of video monitoring Konrad et al, Laryngoscope 1980

Case Example

- 63 year old male
- Smoker who smoked through therapy
- Completed RT and noted continued vocal fold changes at 6 months post operative
- Outside biopsy inconclusive for CA
Conclusions

- Endoscopic Resection of early laryngeal cancer
 - Cure Rate is similar to radiation therapy
 - Morbidity is less than RT (VOICE) if resection can be limited to the superficial vocal fold
 - Resection is possible after radiation failure

- Muscle involvement portends
 - Increased risk of recurrence
 - Poor voice outcome
Conclusions

Survival is dependent on the quality of Surveillance/Follow Up.

Thank You