Overview

- Options for abdominal wall reconstruction
 - Autologous
- Development of components separation
- Technique
- Results (short and long-term)
- Variations of components separation

The Problem

- Abdominal Wall

The Solution(s)

- Primary repair
- Autologous reconstruction
 - Components separation
- Mesh
- Biologics
- Combinations
The Problem

- Incisional hernias complicate as many as 11% of all abdominal operations
- 30-50% recurrence among those undergoing VHR
- Acquired abdominal wall defects common in the trauma population
- Longstanding open abdomen results in lateral migration of the rectus and flank muscle contraction

Recurrence Rates after Recurrent Incisional Hernia Repair

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Follow-up</th>
<th>Recurrence Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamont, 1988</td>
<td>36</td>
<td>to 5 yrs</td>
<td>44</td>
</tr>
<tr>
<td>Read, 1989</td>
<td>36</td>
<td>to 10 yrs</td>
<td>42</td>
</tr>
<tr>
<td>Hesselink, 1993</td>
<td>298</td>
<td>35 months</td>
<td>41</td>
</tr>
<tr>
<td>Pless, 1993</td>
<td>32</td>
<td>45 months</td>
<td>28</td>
</tr>
</tbody>
</table>

DiBello and Moore, 1996

Etiology: Abdominal Wall Defects

- Congenital
- Acquired
 - Tumor resection
 - Infection
 - Trauma
 - Incisional (failed attempt at primary closure)

Considerations

- Abdominal wall defect components
 - Overlying skin and soft tissue
 - Fascia
 - Both
- Presence or absence of infection
- Location
- Size
- ALL effect choice of reconstruction
Preoperative Considerations

- Optimize nutrition
- Co-morbidities
- Obesity
- Cigarette smoking
- Wound management
- Manage patient expectations

Location of the Defect

- Midline vs. lateral
- Upper vs. lower
- CT scan helpful to delineate abdominal wall anatomy

Mathes Classification

Mathes SJ, Ann Surg 2000

Defect Analysis
Defect Analysis

Benefits to Avoiding Mesh

- Wounds with unstable soft tissue coverage → prosthetic mesh poses an increased risk for extrusion or infection
- Complication rates of 18% to 50%
 - Extrusion
 - Infection
 - Fistula formation
 - Bowel adhesion with obstruction
 - Recurrence of hernia

Exposed Mesh

Abdominal Wall: Vascular Supply

- **Zone I** = Mid-abdomen
 - Deep epigastric arcade, superior & inferior
- **Zone II** = Lower abdomen
 - Superficial inferior epigastric artery
 - Superficial external pudendal artery from femoral artery
 - Deep circumflex iliac artery
- **Zone III** = Flank & lateral abdomen
 - Intercostal, subcostal, & lumbar arteries (lie on TA)
Innervation of the Abdominal Wall

Innervation to RA, EO, IO, and TA through T7-L1

Abdominal Wall Reconstruction

- **Goals:**
 - Prevent visceral extrusion
 - Tension-free closure
 - Incorporate with the remaining abdominal wall
 - Provide strong, dynamic, innervated, vascularized musculofascial support
 - Endure over time

Options for Abdominal Wall Reconstruction

- **Alloplastic Material**
 - Prolene
 - Vicryl
 - Marlex
- **Biologics**
- **Autologous tissue**
 - Local tissue* (components separation)
 - Distant tissue

Components Separation

- Ramirez et al 1990
- **Purpose:** “To determine if separation of the muscle components of the abdominal wall would allow mobilization of each unit over a greater distance than possible by mobilization of the entire abdominal wall as a block”
Components Separation

- Cadaver dissections:
 - unilateral 10 cm advancement at the waist: including the rectus abdominis, internal oblique and transversus abdominis compound flap

Findings

- External oblique separates easily from internal oblique
- Rectus easily separated from posterior sheath
- Neurovascular bundle travels on the deep surface of the internal oblique muscle
- Result: Vascularized tissue coverage with intact innervation

Technique

- Components
 - Rectus abdominis
 - Internal oblique
 - Transversus abdominis

Component Separation

Elevate skin and subcutaneous tissues just lateral to rectus sheath.
Separate external oblique from rectus and internal oblique.
Separate rectus abdominis from post. rectus sheath.
Components Separation

- Upper 1/3rd: up to 10cm defects
- Middle 1/3rd: up to 20cm defects
- Lower 1/3rd: 6-8 cm defects

“Components Separation” Advancements

- RA/IO/TA U/L
- RA/IO/TA B/L

Literature Review

- Ramirez study: 11 patients, no recurrence
- Recurrence rates:
 - Girotto et al, 2003, 15%
 - Shestak et al, 2000, 2%
 - DiBello et al, 1996, 8.5%
 - Cohen et al, 2000, 3%
 - Dumanian et al, 2009, 22.8%
Complications

- Many due to the hernia reduction and lysis of adhesions
 - Prolonged ileus 10-30%
 - Wound infection 10-40%
 - Seroma 3-20%
 - Blood transfusions 10-20%
 - Recurrence 2-40%

Considerations

- Innervation of the abdominal wall
 - Avoid separating the internal oblique from the transversus abdominis to preserve neurovascular bundles
- Preserve perforating blood supply to the skin when possible

Considerations

- Right of domain: Those patients with massive hernias have an obligatory decrease in the circumference of the abdominal girdle
 - Can lead to pulmonary compromise
- Tissue quality dictates choice of reconstruction

Case Examples
Preserve musculocutaneous perforating vessels to the abdominal wall

Defect size: 16cm
Abdominal Wall

Abdominal Wall

Abdominal Wall

Abdominal Wall
Significant abdominal wall laxity

Conversion to mesh repair
Post-operative Routine

- NPO until bowel function
- Binder at all times for 6 weeks
- 2 drains
- Limited activity x 6 weeks

Rectus Advancement Techniques

- Lateral Rectus Release
 - Often used synonymously as “components separation”

Endoscopic Components Separation

- Minimize damage to the abdominal wall vasculature
- Endoscopic release of the external oblique muscle
Endoscopic Components Separation

- Endoscopic CS may minimize vascular damage and decrease post-op dehiscence
- 7 endo CS pts vs. 30 open CS
- Results = Fewer post-op and long term complications w/ endo group, but recurrence was not different

Tissue Expansion

Deficient skin and subcutaneous tissues
Tissue expansion prior to repair
Can be placed alternatively under fascia
Can be used with mesh repair

Algorithm for Abdominal Wall Defects

- Midline defects <5cm in width
 - Local closure
- Midline defects >6cm
 - Mesh
 - Local, regional flaps or free flaps
 - Lateral rectus release
 - Components separation

Conclusion

- Reconstruction of abdominal wall defects requires complex and creative planning and an approach tailored to the unique defect of each patient
- Outcome: Patient selection and type of repair method used
- Components separation effective method for abdominal wall reconstruction
Thank You