Nomograms--Do They Have a Role in Bladder Cancer?

Seth P. Lerner, MD, FACS
Beth and Dave Swalm Chair in Urologic Oncology
Scott Department of Urology
Baylor College of Medicine

UCSF Bladder Cancer Post Graduate Course
April 9, 2010

Risk Assessment

- What do patients want?
 - Will I live or die?
 - How much time do I have?
 - Will I need additional treatment?

- What do clinicians want?
 - Accurate risk stratification
 - Criteria for peri-operative therapy
 - Clinical trial eligibility
 - Will treatment work in my patient - Targeted therapy

Computing Probabilities of Outcome

- Physician judgment
- Overall average
- Risk group stratification
- Prediction models eg Cox multivariate or logistic regression
- Nomograms – graphical representation of prediction model
 - Individualized prediction of endpoint

Problems with Physician Judgment

- We do not recall all cases equally
- We are inconsistent when processing memory
- We predict preferred outcome rather than the one with the highest probability
- Can we integrate multiple prognostic factors without the aid of a computer?
Patient Centered Care

- Attending surgeon is the single most important factor in treatment choice\(^1\)
- Patient recall of testing procedures generally poor\(^1\)
- Regret over decision-making significant when complications arise\(^2\)
- Therefore, accurate estimates of risk are essential for physicians if they are to recommend a specific management.

Other Nomogram Advantages

- Bootstrapping allows internal validation without sample size limitations\(^1\)
 - External validation requires “substantial” sample sizes
- Graphical representation allows one to see direction and magnitude of the contribution of each variable

Other Nomogram Advantages

First Generation RRP
Biochemical Recurrence (PSA ≥ 0.4)

Nomogram vs. Clinician Prediction

- Nomogram and clinician similar in predicting organ-confined disease (CI 0.79 vs. 0.78, resp.)
- Nomogram outperformed urologist predicting 5-year recurrence-free probability (CI 0.67 vs. 0.55, resp.)

\(^1\)Miles et al Urology 53:169, 1999
\(^2\)Clark, et al JCO 19:72, 2001

\(^2\)Ross, et al Semin Urol Oncol 20:82, 2002
Validation Kattan Nomogram
Predicting Recurrence after RRP
 - CAPSURE community-based
 - CI 0.68
 - International Data set (Hamburg)
 - AUC 0.83 for 5-year biochemical recurrence

Bladder Cancer Nomograms
Potential Uses
- Invasive (≥T1)
 - Predict pathology
 - Predict outcome after treatment
 - Determine recommendation for neo or adjuvant therapy
 - Select patients for clinical trials
- Non-muscle invasive
 - Recurrence and progression probability
 - Intravesical therapy response

Radical Cystectomy
Factors Affecting Outcome
- Optimizing surgery
- Peri-operative chemotherapy
- Pathologic stage (T and N)
- Pathologic variables
 - LVI, CIS, Small cell, Micropapillary, biomarkers
- Age
- Gender
- Co-morbidity

The Bladder Cancer Research Consortium (BCRC)
- Founded in 2003
- Collaboration among Baylor College of Medicine, UT Southwestern, Johns Hopkins and the University of Montreal
- Patients contributed by Baylor, UT Southwestern and Johns Hopkins
- Senior collaborators:
 Seth P. Lerner, M.D.
 Arthur I. Sagalowsky, M.D.
 Mark P. Schoenberg, M.D.
Study cohort, n=958

- 958 consecutive patients
- Radical cystectomy
- 1984 to 2003
- 3 institutions:
 - BCM: 290 (30%)
 - UTSW: 392 (41%)
 - JHU: 276 (29%)

Study population, n=958

Exclusions: n = 176 (18.4%)

- Pre-operative TCC cancer: (n=67, 7.0%)
- Pathologic TCC cancer: (n=68, 7.1%)
- Pathologic T stage: (n=78, 8.1%)
- Pathologic grade: (n=5, 0.5%)
- Pathologic N stage: (n=33, 3.4%)
- Neoadj chemo: (n=38, 4.0%)
- Adjuvant chemotherapy: (n=50, 5.2%)
- Adjuvant radiotherapy: (n=2, 0.2%)
- Lympho-vascular invasion: (n=16, 1.7%)
- Time to recurrence/censoring: (n=4, 0.4%)
- CIS: (n=85, 9.0%)
- Recurrence/cystectomy dates: (n=3, 0.3%)

Target sample: 782 (81.6%) evaluable patients

Statistical analyses:
- Kaplan-Meier analyses and multivariate Cox regression models
- Outcome: bladder cancer recurrence and survival at 2, 5 and 8 years
- Predictors: gender, age, pathologic grade, pT, pN, LVI, CIS, neoadjuvant chemo, adjuvant chemo, adjuvant XRT
- Regression coefficient-based nomogram
- 200 bootstrap internal validation to reduce overfit bias

Results
Clinical and pathological characteristics n= 728

- Age (33.1-89.2 yrs) Mean: 64.5; Median: 66.0
- LVI 272 (37.4%)
- Pathologic T stage:
 - T0 56 (7.7%)
 - Tis 92 (12.6%)
 - Ta 23 (3.2%)
 - T1 94 (12.9%)
 - T2 163 (22.4%)
 - T3 215 (29.5%)
 - T4 85 (11.7%)
- Pathologic N stage:
 - 0 556 (76.4%)
 - 1 66 (9.1%)
 - 2 92 (12.6%)
 - 3 14 (1.9%)
- Pathologic grade:
 - absence of cancer 56 (7.7%)
 - 2 55 (5.5%)
 - 3 619 (84.8%)

Suite of Nomograms

- Radical cystectomy outcomes
 - Recurrence
 - Survival
- Pre-operative prediction of pathologic T3,T4 or N+
- Competing Risk Survival
Case 1

- A 50-year-old female with a pathologic stage P2bN0M0 bladder TCC after radical cystectomy and orthotopic continent diversion.
- Estimated 5-year recurrence probability is: **25%** (Yu, et al J Urology 2006)
Case 1 (cont.)

- Nomogram estimated probability of recurrence at 5 years is: 16%

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nomogram estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 60</td>
<td>17%</td>
</tr>
<tr>
<td>Age 70</td>
<td>18%</td>
</tr>
<tr>
<td>CIS +</td>
<td>19%</td>
</tr>
<tr>
<td>LVI +</td>
<td>21%</td>
</tr>
<tr>
<td>CIS+/LVI+</td>
<td>25%</td>
</tr>
</tbody>
</table>

Comparing Accuracy

- PCA biochemical recurrence CI
 - RRP recurrence (Baylor) (n=983) 0.79
 - RRP recurrence 2nd generation (n=1978) 0.79
 - Radiotherapy predicting metastases (n=1677) 0.81
- Renal Cell Ca recurrence (MSKCC)
 - Radical nephrectomy (n=601) 0.74
 - Clear cell post rad/partial nephrectomy (n=771) 0.82
- Bladder cancer recurrence
 - PBCR consortium (n=728) 0.78
 - International (MSKCC) (n=9064) 0.75

Biomarker Nomogram Predicting Recurrence: PTa-3N0

Predictive accuracy with markers improved 10.9% from 72.5% without markers (p<0.001)

Nomogram Limitations

Generalizability

- Patient population
- Time period
- Cell type
- Stage migration
- Single center vs. multi-center
- Tertiary care vs. community based
Should I Use This Nomogram?

BJUI Comments

- Is the nomogram treatment comparable?
- Is the time frame contemporary?
- Is the predicted endpoint relevant?
- Is the alternative prediction tool better or worse?

BJU Int 102:421, 2008

MSKCC Bladder Recurrence Nomogram:

International Bladder Cancer Nomogram

Recurrence after Radical Cystectomy

<table>
<thead>
<tr>
<th>Points</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC Age</td>
<td>p10</td>
<td>p11</td>
<td>p12</td>
<td>p13</td>
<td>p14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC Stage</td>
<td>p15</td>
<td>p16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC Histology</td>
<td></td>
</tr>
<tr>
<td>Node Result</td>
<td></td>
</tr>
<tr>
<td>OxToRC</td>
<td></td>
</tr>
<tr>
<td>RC Grade</td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td></td>
</tr>
</tbody>
</table>

Predictive accuracy:
- CI: .75
- Path stage: .62
- TNM: .68

Borch, et al IJC 24:3967, 2006

Validation

 - 423 patients 2 centers in Germany, RC 1992 - 2007

<table>
<thead>
<tr>
<th>Variable</th>
<th>c-indices of</th>
<th>5-year recurrence</th>
<th>AUC/TNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRC-nomogram</td>
<td></td>
<td>0.84</td>
<td>0.96</td>
</tr>
<tr>
<td>BCRC-nomogram</td>
<td></td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>ACS</td>
<td></td>
<td>0.85</td>
<td>-</td>
</tr>
<tr>
<td>CSS</td>
<td></td>
<td>0.85</td>
<td>-</td>
</tr>
</tbody>
</table>

"...widespread application of such nomograms can now be initially supported on a sound basis."
Does Nomogram Improve Decision Making for Adjuvant Chemotherapy?

- Adj ctx criteria pT3-4, TanyN+
- Risk recur 10%, 25%, 70%
- Nomogram use: better outcomes using 25% risk threshold then using only T and N stage

Adjuvantonline.com
Breast Cancer Chemotherapy

Accessed March 28, 2010

Alternative Models for Predicting Outcome

- Artificial Neural Networks
- Artificial Intelligence – Neurofuzzy Modeling

Artificial Neural Network

- 1133 patients 1996-2002
 - 70% used for reference series
 - 30% for validation
- Histology
 - TCC (54%)
 - SCCa (35%)
 - Other (11%)
- Mean follow up 3.7-3.8 years
- Endpoint: 5 year disease-free survival

Artificial Neural Network

Fuzzy Logic (Artificial Intelligence)
- BCRC dataset - recurrence nomogram
- 609 patients with no peri-operative chemotherapy and no LN metastases
- 2 models constructed
 - Classifier: Accuracy: 0.84, CI: 0.92
 - Predictive (timing of recur)
 - Median error of 8.15 months

Risk Assessment and Predicting Outcome in Non-muscle Invasive Disease
Risk Stratification

- Low - TaG1 solitary, primary - 50% patients
- Moderate - Multifocal, recurrent TaT1, G1-2, 35% patients
- High - CIS, any G3(Ta or T1) - 15% of patients
- Progression probability at 5 years
 - Low/Moderate - < 10%
 - High risk - 50%

EORTC: SOTS meeting 2000

Factors Affecting Recurrence

<table>
<thead>
<tr>
<th>Factor</th>
<th>HR</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary vs. Recurrent ≤ 1y vs. > 1y</td>
<td>1.35</td>
<td><.0001</td>
</tr>
<tr>
<td>Number tumors: single, 2-7, 8</td>
<td>1.56</td>
<td><.0001</td>
</tr>
<tr>
<td>Size < 3cm vs. ≥ 3cm</td>
<td>1.54</td>
<td><.0001</td>
</tr>
<tr>
<td>Ta vs. T1</td>
<td>1.21</td>
<td>0.003</td>
</tr>
<tr>
<td>CIS</td>
<td>1.19</td>
<td>0.18</td>
</tr>
<tr>
<td>Grade 1, 2, 3</td>
<td>1.17</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Sylvester et al Eur Urol 49:466, 2006

Nomogram and NMIBC

- 2681 patients – international data set
- 957 recurred
- All with urine cytology and NMP-22

Sylvester et al Eur Urol 49:466, 2006
NMIBC Nomograms - Japan

- 800 patients 1991-2001
- No prior treatment

Recurrence

Progression

T1G3

- 73yo healthy WM
- 1997 RRP pT2 Gleason 3 + 3
- Undetectable PSA 2/06
- Gross hematuria
- Office cystoscopy with multifocal tumors right lateral wall
- Cytology positive

T1G3 (cont)

- Initial TURBT – right lateral wall tumors T1aG3
- Multifocal CIS
- Small papillary tumor anterior bladder neck also T1aG3
- Re-resection – complete into deep muscularis propria – TaG3 (suspicion of T1)

Case 1 – Risk Assessment and Treatment Options

<table>
<thead>
<tr>
<th>EORTC Risk Table</th>
<th>NMP22 Nomo</th>
<th>Yamada Nomo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year risk recurrence?</td>
<td>51% 89% 82%</td>
<td></td>
</tr>
<tr>
<td>2 year risk progression?</td>
<td>26% 27%</td>
<td></td>
</tr>
</tbody>
</table>

- Treatment options:
 - BCG induction
 - BCG + Interferon induction
 - Radical cystectomy