A Comprehensive Approach to Evaluating Anemia

Lloyd E. Damon, M.D.
Professor of Clinical Medicine

Productive State
- **Hyper-productive**
 - Elevated reticulocyte count
 - Acute blood loss
 - Replacement of a deficient nutrient
 - Hemolysis
- **Hypo-productive**
 - Normal or inadequately elevated reticulocyte count
 - Everything else

Anemia by Cell Size

<table>
<thead>
<tr>
<th>Microcytic (<80 fL)</th>
<th>Normocytic (80-100 fL)</th>
<th>Macrocytic (>100 fL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe deficiency</td>
<td></td>
<td>Megaloblastic</td>
</tr>
<tr>
<td>ACD</td>
<td></td>
<td>vitamin B12 deficiency</td>
</tr>
<tr>
<td>Pb toxicity</td>
<td></td>
<td>folate deficiency</td>
</tr>
<tr>
<td>Sideroblastosis</td>
<td></td>
<td>DNA synthesis blockers</td>
</tr>
<tr>
<td>Thalassemia</td>
<td></td>
<td>Non-Megaloblastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>liver failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thyroid failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hemolysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>marrow failure</td>
</tr>
</tbody>
</table>

Size Does Not Answer All Questions

Be aware of mixed anemias!
RBC Size Classification

- **Microcytic**
 - Iron deficiency
 - Anemia of chronic disease
 - Thalassemia
 - Lead toxicity
- **Normocytic**
 - Anything but thalassemia
- **Macrocytic**
 - Megaloblastic
 - Non-megaloblastic

Microcytic Anemias

<table>
<thead>
<tr>
<th>Hypo-productive</th>
<th>Hyper-productive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron deficiency</td>
<td>Thalassemia*</td>
</tr>
<tr>
<td>Anemia of chronic disease</td>
<td></td>
</tr>
<tr>
<td>Lead toxicity</td>
<td></td>
</tr>
</tbody>
</table>

*normal or elevated RBC count

Microcytosis Plus Elevated RBC Count

- Normal Ferritin
 - Thalassemia
 - Thalassemia plus Iron deficiency
- Low Ferritin
 - Polycythemia vera
 - Plus Iron deficiency

Macrocytic Anemia

<table>
<thead>
<tr>
<th>Smear</th>
<th>Megaloblastic</th>
<th>Non-Megaloblastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smear</td>
<td>• macroovalocytes</td>
<td>• target cells</td>
</tr>
<tr>
<td></td>
<td>• hypersegmented neutrophils</td>
<td>• other poikilocytosis</td>
</tr>
<tr>
<td>Diseases</td>
<td>Vitamin B12 deficiency</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>Folate deficiency</td>
<td>Hypothyroidism</td>
<td></td>
</tr>
<tr>
<td>DNA synthesis inhibitors</td>
<td>Hemolysis</td>
<td></td>
</tr>
</tbody>
</table>
Anemia of Chronic Disease

relative or absolute hypoerythropoietemia

- Anemia of inflammation** - sideropenia
 - Malignancy
 - Granulomatous disease
 - Autoimmune rheumatologic disorders
 - Chronic infection
 - Hospitalized patient with subacute illness
 - Heart failure
 - Chronic kidney disease
 - Unknown
- "Anemia" of endocrine deficiency - euferria
 - Hypothyroid
 - Panhypopituitarism
 - Hypoadrenalism
 - Hypogonadism (males)
- Anemia of visceral organ failure - variable serum iron
 - Renal failure
 - Hepatic failure

Anemia of Inflammation - Hepcidin and Ferroportin

- Blunted response to erythropoietin
- Shortened RBC survival
- Pro-inflammatory cytokines restrict erythropoiesis and sequester iron in splenic macrophages
 - TNFα, IL-1β, macrophage migration inhibitory factor, acute phase reactants
- IL6 mediates hepcidin transcription which promotes the internalization and degradation of ferroportin
 - Reduced iron absorption across intestinal lumen
 - Impaired release of iron in macrophages to marrow erythroid progenitors

Geriatrics 1992: 47: 47-57

Hematology 2010; 276-280
Iron Deficiency vs ACD

<table>
<thead>
<tr>
<th>Test</th>
<th>Iron deficiency</th>
<th>ACD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV</td>
<td>low, normal</td>
<td>low, normal</td>
</tr>
<tr>
<td>MCH</td>
<td>low, normal</td>
<td>low, normal</td>
</tr>
<tr>
<td>serum iron</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>transferrin</td>
<td>normal, high</td>
<td>normal, low</td>
</tr>
<tr>
<td>% saturation</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>ferritin</td>
<td>normal, low</td>
<td>normal, high</td>
</tr>
<tr>
<td>sol. transferrin receptor</td>
<td>high</td>
<td>normal</td>
</tr>
</tbody>
</table>

* <30 ng/mL

Anemia of Inflammation

Iron Deficient

Iron Replete

Iron Responsive

Iron Non-Responsive

Diagnostic Tests to Determine Iron Deficiency Coincident with Inflammation

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reticulocyte Hgb concentration</td>
<td><28 pg</td>
<td>Functional iron deficiency</td>
</tr>
<tr>
<td>Serum ferritin</td>
<td><30 ng/mL</td>
<td>Iron deficient</td>
</tr>
<tr>
<td>sTransferrin receptor / log Ferritin ratio (sTfR units = ng/L)</td>
<td>>1.5 0.8-1.5 <0.8</td>
<td>Iron deficient Iron replete Iron deficient with inflammation</td>
</tr>
</tbody>
</table>

Etiologies of Anemia in the Elderly

Blood 2004; 104: 2263
Anemia of the Elderly

- Incidence
 - 10%, ≥65 years
 - 20%, ≥85 years

- Race/Ethnicity
 - Non-Hispanic blacks 3-fold more likely than Non-Hispanic whites to be anemic

- Pathophysiology of ‘Unexplained Anemia’
 - Epo-resistance in the aging hematopoietic stem cell
 - Reduced Epo production from the aging kidney
 - Increased elaboration of inflammatory cytokines with age

Vitamin D Deficiency and Anemia of the Elderly

- Vitamin D deficient (<20 ng/dL)
 - OR 1.47 for any anemia (1.06, 2.05; p=0.02)
 - OR 1.88 for anemia of inflammation (1.64, 2.07; p<0.05)

- Independent of age, sex, race/ethnicity

 • Not associated with “unexplained anemia”

Blood 2011; 117: 2800
Vitamin D Deficiency and Anemia in Older People

NHANES 2001-6

Evaluating Anemia: Initial Diagnostic Tests

- Productive state
 - Reticulocyte count
 - Direct Coomb’s test
- Morphology
 - Blood smear
- Nutrients
 - Iron, ferritin
 - Vitamin B12 ± methyl malonic acid
 - RBC folate
 - TSH, free T4
 - Cr, eGFR (± EPO)
 - ? Vitamin D

Evaluating Anemia: Secondary Diagnostic Tests

- Distinguish iron deficiency from anemia of Inflammation
 - sTransferrin receptor/log ferritin ratio
 - Reticulocyte Hgb concentration
 - Bone marrow biopsy - iron stain
- Rule out uncommon causes of anemia
 - Serum and Urine Immunofixation Electrophoresis
 - Hgb Electrophoresis
- Rule out bone marrow pathology - biopsy
 - Primary (aplastic anemia, pure red cell aplasia, MDS)
 - Infiltrative disease - malignancy, infection, granulomatous disease
- Therapeutic and Diagnostic Trial
 - IV iron trial

ESAs: Treatment of Anemia of Chronic Diseases

- Anemia of Inflammation
 - RA, SLE, IBD
 - HIV treated with AZT
 - Hepatitis C
- Anemia of Malignancy
 - Treated with chemotherapy
 - Palliative intent
- CKD
- MDS
Treating Iron Replete Anemia with Parenteral Iron

- “Functional iron deficiency” = iron restricted erythropoiesis
 - Immediate circulating plasma iron briefly available to the erythron
- Indications
 - ESRD
 - Cancer with myelosuppressive chemotherapy
- Combine with ESA (erythropoietic stimulating agent)
 - Epoetin
 - Darbepoetin

Drive Trial

 Reprinted with Permission from the American Society of Nephrology
Drive Trial

![Graph showing response proportions over time](image)

Reprinted with permission from the American Society of Nephrology

Anemia of Cancer

<table>
<thead>
<tr>
<th>Decreased Production</th>
<th>Increased Destruction</th>
<th>Blood Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia of Inflammation</td>
<td>Hemolysis</td>
<td>Acute</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>Chronic</td>
<td></td>
</tr>
<tr>
<td>Nutritional deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone marrow infiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reprinted with permission from Annual Reviews

Anemia of Cancer

![Diagram showing various causes and effects of anemia](image)

Competing Effects of ESAs in the Treatment of the Anemia of Cancer

![Diagram illustrating the effects of ESAs](image)

Reprinted with permission from Annual Reviews

ESA Meta Analysis in Cancer Patients: Overall Survival

Lancet 2009: 373: 1532-42

ESA Meta Analysis in Cancer

Survival

Br J Cancer 2010; 102: 301

ESA Meta Analysis in Cancer

Overall Survival

Br J Cancer 2010; 102: 301

ESA Meta Analysis in Cancer

Cancer Progression

Br J Cancer 2010; 102: 301
ESA Meta Analysis in Cancer Venothromboembolic Events

Reprinted with Permission from the Nature Publishing Group

Randomized Trials of ESA Plus Parenteral Iron in Cancer Patients

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>ESA</th>
<th>Design</th>
<th>%Hgb response</th>
<th>%Transfused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadenus</td>
<td>67</td>
<td>E</td>
<td>IV vs oral</td>
<td>93 √</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td>3 √</td>
</tr>
<tr>
<td>Bestit</td>
<td>398</td>
<td>D</td>
<td>IV vs oral/none</td>
<td>80 √</td>
<td>9 √</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Pedrazzoli</td>
<td>149</td>
<td>D</td>
<td>IV vs none</td>
<td>77 √</td>
<td>3 √</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Auerbach</td>
<td>238</td>
<td>D</td>
<td>IV vs none</td>
<td>82 √</td>
<td>36 √</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Hematology 2010: 351-6

E, epoetin D, darbepoetin

Hemoglobin Response To IV Iron In Cancer Patients Receiving Chemotherapy and Darbepoetin

Reprinted with Permission from the American society of Clinical Oncology
Take Home Points -1-

- Classify the Anemia
 - RBC indices
 - Reticulocyte count
- Order routine RBC nutrient tests
- Order tests as directed by the anemia classification and review of the blood smear
- Iron pathophysiology has become more complicated
 - Ferritin
 - Reticulocyte Hgb concentration
 - Soluble Transferrin receptor to log ferritin ratio
 - Bone marrow biopsy - iron stain

Take Home Points -2-

- Vitamin D deficiency is more prevalent in patients with the anemia of inflammation
- ESAs have a therapeutic role
 - CKD
 - Malignancy treated with chemotherapy
 - Rheumatologic disorders, hep C, HIV (AZT)
 - MDS
- Iron restriction complicates anemia of inflammation in iron replete settings
- IV iron improves Hgb response and reduces the need for transfusions when added to ESAs
 - ESRD
 - Malignancies treated with chemotherapy

References