Dermatology Pearls for the Hospitalist: How to Avoid the Pitfalls

Lindy P. Fox, MD
Assistant Professor
Director, Hospital Consultation Service
Department of Dermatology
University of California, San Francisco
foxli@derm.ucsf.edu

Goals of this lecture

• Drug eruptions
 – Tell the difference between a benign and serious drug eruption
 – Know which drug(s) to stop
• Purpura
 – How to think about it

Goals of this lecture

• Herpes simplex/zoster in the hospital
 – Unusual presentations
 – Appropriate infection control
• Psoriasis
 – How to avoid precipitating a medical emergency
• The red leg
 – How to tell when it’s not cellulitis
• Pyoderma gangrenosum
 – Avoid a potential nosocomial disaster
• Common benign dermatoses in the hospital

I think it’s a drug eruption. Now what do I do?
Drug reactions:
3 things you need to know
1. Type of drug reaction
2. Statistics:
 – Which drugs are most likely to cause that type of reaction?
3. Timing:
 – How long after the drug was started did the reaction begin?

Case
- 46 year old HIV+ man
 - admitted to ICU for r/o sepsis
- Severely hypotensive → IV fluids, norepinephrine
- Sepsis? → antibiotics are started
- At home has been taking trimethoprim/sulfamethoxazole for UTI

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Days</th>
<th>Rash Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>F</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>G</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Question: Per the drug chart, the most likely culprit is:
- A
- B
- C
- D
- E
- F
- G

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Days</th>
<th>Rash Onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>F</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>G</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Question: Per the drug chart, the most likely culprit is:
- A
- B
- C
- D
- E
- F
- G
Drug Eruptions: Degrees of Severity

Simple
- Morbilliform drug eruption
- Minimal systemic symptoms

Complex
- Drug hypersensitivity reaction
- Stevens-Johnson syndrome (SJS)
- Toxic epidermal necrolysis (TEN)
- Systemic involvement

Morbilliform (Simple) Drug Eruption
- Begins 5-10 days after drug started
- Erythematous macules, papules
- Pruritus
- No systemic symptoms
- Risk factors: EBV, HIV infection
- Treatment:
 - D/C medication
 - diphenhydramine, topical steroids
- Resolves 7-10 days after drug stopped
 - Gets worse before gets better

Common Causes of Cutaneous Drug Eruptions
- Antibiotics
- NSAIDs
- Sulfa
- Allopurinol
- Anticonvulsants
Simple drug eruption - day 3

Simple drug eruption - day 7

Hypersensitivity Reactions

• Skin eruption associated with systemic symptoms and alteration of internal organs
• “DRESS”: Drug reaction w/ eosinophilia and systemic symptoms
• “DiHS” = Drug induced hypersensitivity syndrome
• Begins 2-6 weeks after medication started
 – time to abnormally metabolize the medication
• May be role for HHV6
• Mortality 10-25%

Hypersensitivity Reactions
Drugs

• Aromatic anticonvulsants
 – phenobarbital, carbamazepine, phenytoin
 – THESE CROSS-REACT
• Sulfonamides
• Lamotrigine
• Dapsone
• Allopurinol (HLA-B*5801)
• NSAIDs
• Other
 – Abacavir (HLA- B*5701)
 – Nevirapine (HLA-DRBI*0101)
 – Minocycline, metronidazole, azathioprine, gold salts
• Each class of drug causes a slightly different clinical picture
Hypersensitivity Reactions

Clinical features

- Rash
- Fever (precedes eruption by day or more)
- Pharyngitis
- Hepatitis
- Arthralgias
- Lymphadenopathy
- Hematologic abnormalities
 - eosinophilia
 - atypical lymphocytosis
- Other organs involved
 - myocarditis, interstitial pneumonia, interstitial nephritis, thyroiditis

Anticonvulsant Hypersensitivity Reaction
Allopurinol Hypersensitivity

Hypersensitivity Reactions Treatment

- Stop the medication
- Avoid cross reacting medications!!!!
 - Aromatic anticonvulsants cross react (70%)
 - Phenobarbital, Phenytoin, Carbamazepine
 - Valproic acid and Keppra generally safe
- Systemic steroids (Prednisone 1.5-2mg/kg)
 - Taper slowly: 1-3 months
- Allopurinol hypersensitivity may require steroid sparing agent
 - NOT azathioprine (also metabolized by xanthine oxidase)
- Completely recover, IF the hepatitis resolves
- Check TSH monthly for 6 months
- Watch for later cardiac involvement (low EF)
Severe Bullous Reactions

- Stevens-Johnson Syndrome
- Toxic Epidermal Necrolysis (TEN)

Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN)

- Medications
 - Sulfonamides
 - Aromatic anticonvulsants (carbamazapine [HLA-B*1502], phenobarbital, phenytoin)
 - Allopurinol (HLA-B*5801)
 - NSAIDs (esp. Oxicams)
 - Nevirapine (HLA-DRB1*0101)
 - Lamotrigine
 - Weaker link: Sertraline, Pantoprazole, Tramadol

Stevens-Johnson (SJS) versus Toxic Epidermal Necrolysis (TEN)

<table>
<thead>
<tr>
<th>Disease</th>
<th>BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJS</td>
<td>< 10%</td>
</tr>
<tr>
<td>SJS/TEN overlap</td>
<td>10-30%</td>
</tr>
<tr>
<td>TEN with spots</td>
<td>> 30%</td>
</tr>
<tr>
<td>TEN without spots</td>
<td>Sheets of epidermal loss > 10%</td>
</tr>
</tbody>
</table>

Causes:
- Drugs
- Mycoplasma
- HSV

Erythema, bullae
Skin pain
Mucosal membranes ≥ 2

Causes:
- Drugs
Stevens-Johnson Syndrome

- **Incidence**
 - 6 cases per million per year
- **Etiology**
 - Typical drugs
 - NSAIDs, sulfonamides, anticonvulsants, allopurinol
 - Mycoplasma: up to 25% of pediatric patients with SJS
- **Mortality**
 - 5%

Stevens-Johnson Syndrome

- **Prodrome**
 - fever, respiratory symptoms, headache, vomiting, diarrhea
- **Clinical morphology:**
 - Widespread typical targets or
 - Atypical “targetoid” or bullous
 - +/- skin pain, fragility, blisters
 - Two or more mucous membranes involved
A Special Case: Phenytoin + XRT = SJS

Toxic Epidermal Necrolysis

- Incidence
 - 0.4-1.2 cases per million per year in general population
 - 1 case per thousand per year in HIV
- Etiology: almost always a medication
 - NSAIDs, sulfonamide, anticonvulsants, allopurinol
- Mortality up to 25-35%
 - Sepsis, multiorgan failure

SCORTEN

- Criteria
 1. Age > 40 yrs
 2. Presence of malignancy
 3. BUN > 27 mg/dL
 4. Glucose >252 mg/dL
 5. Pulse > 120 bpm
 6. Bicarbonate <20mEq/l
 7. BSA > 10%
- Mortality rates
 - 0-1 3.2%
 - 2 12.2%
 - 3 35.3%
 - 4 58.3%
 - ≥5 90%

Toxic Epidermal Necrolysis

- Prodrome: fever, sore throat, burning sensation in eyes X 1-3 days before skin lesions appear
- Clinical features
 - Flat atypical purpuric targets
 - Lesions become dusky, poorly demarcated, and confluent (>30% BSA)
 - Lesions often blister
 - Nikolsky sign
 - Skin is PAINFUL
 - Often have mucous membrane involvement
Toxic Epidermal Necrolysis

• Systemic involvement can occur
 – GI tract
 – Pulmonary
 • Hypoxemia without chest X-ray abnormalities
 • Bronchial epithelial sloughing
 – Liver
 • LFTs can be abnormal
 – Leukopenia common

Stevens-Johnson Syndrome (SJS)/ Toxic epidermal necrolysis (TEN)
SJS/TEN: Emergency Management

• Stop all unnecessary medications
 – The major predictor of survival and severity of disease
• Ophthalmology consult
• Check for Mycoplasma: 25% of SJS in pediatric patients
• Treat like a burn patient
 – Monitor fluid and electrolyte status (but don’t overhydrate)
 – Nutritional support
 – Warm environment
 – Respiratory care
• Death (up to 25% of patients with more than 30% skin loss, age dependent)

SJS/TEN: Treatment

• Topical
 – Protect exposed skin, prevent secondary infection
 – Aquaphor and Vaseline gauze
• Systemic: controversial
 – No role for empiric antibiotics
 • Surveillance cultures
 • Treat secondary infection (septicemia)
 – Consider antivirals, treat Mycoplasma if present
 – SJS: high dose corticosteroids -1.5-2 mg/kg prednisone (no RCT)
 – TEN: IVIG 1g/kg/d x 4d

Pathogenesis of TEN

Normal skin
Express Fas (CD95)

TEN
Induction of Fas L → Fas: Fas L binding induces widespread apoptosis of keratinocytes

IVIG (intravenous immunoglobulin) as a treatment for TEN

Human IVIG has antibodies against Fas L
IVIGblocks Fas mediated apoptosis in vitro & Arrests development of TEN in vivo
TEN Treated With IVIG

Start IVIG 48 hrs later: no bullae

IVIG for TEN
Dose and Response

- Recommended dose: 0.5-1.0g/kg/d over 3-5 days
- Arrest in disease progression in 24-48 hours
- Complete re-epithelialization within 4-10 days
- Decreases mortality?*
 - Decreases to 6-12% in some studies
 - Other studies report increased mortality
- 7 of 9 studies (non-controlled clinical studies with ≥ 10 pts)
 - Overall mortality benefit of IVIG in doses > 2g/kg*
- Risk factors for failing to respond to IVIG**
 - Delayed use of IVIG (≥ day 10), lower dose (2g/kg total), underlying chronic diseases, higher BSA involved (>65%), older age
- Also batch-to-batch variation in anti-Fas activity

*Semín Cutan Med Surg 2006. 25:91-3
*Allergology Int 2006. 55: 9-16
**Arch Derm 2003. 139:26-32

Miscellaneous Drug Eruptions You Should Know About

- Acute generalized exanthematous pustulosis
- Linear IgA bullous dermatosis

Acute Generalized Exanthematous Pustulosis = Pustular Drug Eruption

- Sudden onset (2.5-5d after med started)
- 17% patients have previous history of psoriasis
- Memory T cells produce neutrophil promoting cytokines: IL-3, IL-8 and GM-CSF
- Pinpoint subcorneal pustules on scarlatiniform erythema
- Denudation in intertriginous areas
- Fever, eosinophilia (30%), neutrophilia (90%)
- Completely resolves if offending medication discontinued in ≤ 15 days (I think much sooner)
Acute Generalized Exanthematous Pustulosis = Pustular Drug Eruption

- **EuroSCAR (97 cases of AGEP, 1009 controls):**
 - Macrolides
 - Ampicillin/amoxicillin
 - Quinolones
 - (hydroxy)chloroquine
 - Sulphonamides
 - Terbinafine
 - Diltiazem
 - No infections found
 - Not associated with personal or family history of psoriasis

Acute Generalized Exanthematous Pustulosis = Pustular Drug Eruption

- **Antibiotics**
 - β-lactam
 - Macrolides
 - Cephalosporins
 - Quinolones
 - Tetracyclines
 - Other
 - Bactrim
 - Metronidazole
 - Vancomycin

- **Antifungals**
 - Griseofulvin
 - Itraconazole
 - Terbinafine
 - Nystatin

- **Other**
 - Allopurinol
 - Calcium channel blockers
 - Carbamazepine
 - ACE inhibitors
 - Furosemide
 - Thalidomide
 - PUVA
Drug-Induced Linear IgA Disease

- Immune-mediated subepidermal blistering disease
 - Antigen: 97 kDa of BPAG2 (BP180)
 - DIF: band-like (linear) IgA deposition at DEJ

- Clinical features
 - Subepidermal blisters accentuated in flexural areas
 - Morphology: herpetiform or rosette-like

- Can be caused by medications
 - Vancomycin most common

Common causes
- Vancomycin
- Penicillins
- Cephalosporins
- Captopril

Others
- Amiodarone
- Sulfamethoxazole
- Diclofenac
- Furosemide
- Glyburide
- GCSF
- IFN
- Lithium
- Phenytoin
- Piroxicam
- Rifampin
Oh No! The Patient Has Purpura!
Purpura

- Clinical morphology guides the differential diagnosis
- When fever is present, usually due to systemic inflammatory process or infection

Purpura Definitions

- Purpura = extravasated red blood cells
 - Hemorrhage is an integral part of the lesion and not secondary to inflammation
- Nonpalpable purpura
 - Petechiae - pinpoint spots
 - Macular purpura - larger than pinpoint
- Palpable purpura
 - Palpability implies inflammation damaging vessel
- Retiform purpura
 - Purpura in netlike pattern

Morphology of Purpura

- Petechiae
- Macular purpura
- Palpable purpura
- Retiform purpura
Petechiae

- Platelet Related
- Non-platelet Related

Petechiae- Platelet Related

- Thrombocytopenia
 - Idiopathic thrombocytopenic purpura
 - Leukemia/bone marrow failure
 - Heparin induced thrombocytopenia
 - Thrombotic thrombocytopenic purpura
 - Hemolytic uremic syndrome
 - Disseminated intravascular coagulation (DIC)
 - Drug induced
 - Cirrhosis

- Abnormal platelet function
 - Congenital/hereditary
 - ASA, NSAIDs
 - Thrombocytosis
 - Renal insufficiency

Petechiae- Non-platelet Related

- Valsalva (retching, childbirth)
- Trauma
- Scurvy
- Actinic damage
- Amyloid
- Steroid (topical or systemic) induced atrophy
- Fragility syndromes- Ehlers-Danlos
- Hypergammaglobulinemic purpura of Waldenström
- Infection- early Rocky Mountain Spotted Fever
- Early leukocytoclastic vasculitis

Scurvy

Images courtesy of Timothy Berger, MD
Morphology of Purpura

- Petechiae
- **Macular purpura**
- Palpable purpura
- Retiform purpura

Macular Purpura - Differential Diagnosis

- Thrombocytopenia + infection/inflammation/trauma
- Abnormal platelet function + infection/inflammation/trauma
- Infection
- **Anticoagulant + trauma**
 - DIC
 - Renal or hepatic dysfunction
 - Anticoagulant medications
 - Vitamin K deficiency
- Poor dermal support + trauma
 - Actinic damage
 - Amyloid
 - Steroid-induced atrophy
 - Fragility syndromes: Ehlers-Danlos
 - Trauma
 - Scurvy
- Other
 - Leukocytoclastic vasculitis
 - Hypergammaglobulinemic purpura of Waldenström
 - Emboli (fat, cholesterol)

Thrombocytopenia + Trauma

Linear purpura (=vibex) on upper arm due to blood pressure cuff in thrombocytopenic patient

Steroid induced atrophy, actinic damage, trauma (pneumatic compression device)
Traumatic purpura in patient on warfarin mimicking warfarin skin necrosis

Anticoagulant + Trauma

Hypergammaglobulinemic Purpura of Waldenström

- Female, episodic showers of "stinging" macular or palpable purpura
- Biopsy may show leukocytoclastic vasculitis
- Polyclonal hypergammaglobulinemia
- Association with Sjögren Syndrome, SLE, HCV, cryoglobulinemia

Image courtesy of Paul Schneiderman, MD

Morphology of Purpura

- Petechiae
- Macular purpura
- **Palpable purpura**
- Retiform purpura

Palpable Purpura

Etiology

- Idiopathic (45-55%)
- Infection (15-20%)
- Inflammatory diseases (15-20%)
- Medications (10-15%)
- Malignancy (<5%)
Palpable Purpura

- **Immune complex vasculitis**
 - Idiopathic, infection, drug, malignancy
 - IgA vasculitis, Henoch-Schönlein purpura
 - Urticarial vasculitis
 - Hypergammaglobulinemic purpura of Waldenström
 - Bowel-bypass syndrome
 - Mixed cryoglobulinemia
 - Connective tissue disease associated

- **Pauci-immune complex vasculitis**
 - ANCA-associated
 - Microscopic polyangiitis
 - Wegener granulomatosis
 - Churg-Strauss
 - Cocaine (p-ANCA +)
 - Sweet’s syndrome

- **Other**
 - Leukemic vasculitis

Palpable Purpura “PLUS”

- Size of vessels is a clinical clue to underlying etiology
- Medium-sized vessel involvement leads to dermal/subcutaneous nodules, ulcerations, and/or retiform purpura
- Differential diagnosis
 - Septic vasculitis
 - ANCA-associated vasculitis
 - Mixed cryoglobulinemia
 - Connective tissue disease associated
 - Leukemic vasculitis
 - Polyarteritis nodosa (very rare)
 - More than one process occurring simultaneously

Septic Vasculitis (Bacterial)

- Meningococcemia
- Gonococcemia
- E. coli
- Klebsiella
- Staphylococcus
- Pseudomonas
- Rickettsia rickettsii (Rocky mountain spotted fever)
- Francisella tularensis
- Acute bacterial endocarditis
 - Osler’s nodes, Janeway lesions

Meningococcemia (acute)

Image courtesy of Peter Heald, MD
Mixed Cryoglobulinemia

Morphology of Purpura

- Petechiae
- Macular purpura
- Palpable purpura
- Retiform purpura

Retiform Purpura

- Due to vessel occlusion
- Range in size- small (mm) to large (cm)
- Prominent early erythema most likely represents an infectious or inflammatory etiology while lack of erythema suggests microvascular occlusion*
- Fever also more common with infectious and inflammatory causes

Retiform Purpura DDX

- Intravascular
- Vascular
- Thrombotic
- Embolic
Retiform Purpura

Vascular infiltration in vessel wall

- Infectious
 - Bacterial
 - Meningococemia
 - Gonococcemia
 - Staphylococcus
 - E. coli
 - Klebsiella
 - Pseudomonas
 - Fungal
 - Mucor/Rhizopus
 - Aspergillus
 - Candida
 - Fusarium
 - Other
 - Strongyloidiasis
 - Lycia (leprosy)

- Vasculitis
 - IgA vasculitis
 - Connective tissue disease vasculitis
 - Mixed cryoglobulinemia
 - Polyarteritis nodosa
 - Microscopic polyangiitis
 - Wegener’s granulomatosis
 - Churg-Strauss syndrome
 - Calciniphylaxis
 - Oxalosis

Hyperinfection Strongyloidiasis

BAL Specimen - Strongyloides stercoralis filariform larvae

Hyperinfection Strongyloidiasis
Polyarteritis Nodosa

Cutaneous Polyarteritis Nodosa

Cocaine associated PR3+ vasculitis

Calciphylaxis (early)
Calciphylaxis (late)

Retiform Purpura

Emboli

- Clinical
 - Few lesions
 - Small vessel occlusion
 - Acral/distal
 - Post procedure

- Emboli- DDX
 - Cholesterol
 - Cardiac
 - Marantic endocarditis
 - Septic endocarditis
 - Libman-Sachs endocarditis
 - Atrial myxoma
 - Air
 - Fat
 - upper extrem> lower extrem

Retiform Purpura DDX

Vascular

Intravascular

Thrombotic

Embolic

Emboli- Aortic Thrombus
Emboli- Endocarditis

Image courtesy of Peter Heald, MD

Emboli- infected LV thrombus

Retiform Purpura
DDX

Vascular

Intravascular

Thrombotic

Embolic

Retiform Purpura
Thrombotic

- Abnormal coagulation
- Thrombotic vasculopathy
- Platelet Plugging
- Cold-related
- Red cell occlusion
Retiform Purpura
Thrombotic- Abnormal Coagulation

- Classic hypercoagulable states
 - Protein C, S deficiency
 - Antiphospholipid antibody syndrome
- Coumadin necrosis
 - Protein C deficiency/dysfunction
- DIC/Purpura fulminans

Antiphospholipid Antibody Syndrome

Coumadin Necrosis

Protein C Consumption
DIC Image courtesy of Peter Heald, MD

Purpura Fulminans (DIC)

Retiform Purpura
Thrombotic- Thrombotic Vasculopathy

- Livedoid vasculopathy
- Sneddon’s syndrome
- Malignant atrophic papulosis (Degos’ disease)
- Thromboangiitis obliterans (Buerger’s disease)

Livedoid Vasculopathy, ACLA+, R/O Sneddon's syndrome

Retiform Purpura
Thrombotic−Platelet Plugging
- Heparin induced thrombocytopenia/ heparin necrosis
- Thrombotic thrombocytopenic purpura- Hemolytic uremic syndrome
 - Microangiopathy
- Paroxysmal nocturnal hemoglobinuria
- Thrombocytosis
 - Essential thrombocythemia
 - Polycythemia vera
- Hyperviscosity

Heparin Induced Thrombocytopenia

Retiform Purpura
Thrombotic−Other
- Cold-related
 - Cryoglobulinemia (Type I)
 - Cryofibrinogenemia
 - Cold agglutinins
- Red cell occlusion
 - Sickle cell disease
 - Severe hemolytic anemia
Cellulitis

- Infection of the dermis
- Gp A beta hemolytic strep and Staph aureus
- Rapidly spreading
- Erythematous, tender plaque, not fluctuant
- Patient often toxic
- WBC, LAD, streaking
- Rarely bilateral
- Treat tinea pedis

The red leg:
Cellulitis and its (common) mimics

- Cellulitis/erysipelas
- Stasis dermatitis
- Contact dermatitis

Cryoglobulinemia

Image courtesy of Peter Heald, MD
Stasis Dermatitis

- Often bilateral, L>R
- Itchy and/or painful
- Red, hot, swollen leg
- No fever, elevated WBC, LAD, streaking
- Look for: varicosities, edema, venous ulceration, hemosiderin deposition
- Superimposed contact dermatitis common
Contact Dermatitis

• Common causes
 – Applied antibiotics (Neomycin, Bacitracin)
 – Topical anesthetics (benzocaine)
 – Other (Vitamin E, topical benadryl)
• Avoid topical antibiotics to leg ulcers
 – Metronidazole OK (prevents odor)

• Itch (no pain)
• Patient is non-toxic
• Erythema and edema can be severe
• Look for sharp cutoff
• Treat with topical steroids

The Red Leg:
Key features of the physical exam:

<table>
<thead>
<tr>
<th></th>
<th>Fever</th>
<th>Pain</th>
<th>Warmth</th>
<th>Bilateral</th>
<th>Streaking</th>
<th>Lymphadenopathy</th>
<th>Elevated WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulitis</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Almost</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Consider another diagnosis</td>
<td>No</td>
<td>+/-</td>
<td>+/-</td>
<td>often</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Contact Dermatitis

• Common causes
 – Applied antibiotics (Neomycin, Bacitracin)
 – Topical anesthetics (benzocaine)
 – Other (Vitamin E, topical benadryl)

• Avoid topical antibiotics to leg ulcers
 – Metronidazole OK (prevents odor)
When psoriasis is a life-threatening disease.

Case

- 55 yr old male
- COPD, HTN, non-small cell lung cancer and mild psoriasis
- Presents with low grade fever, shaking chills, and diffuse erythema (erythroderma)
- Meds:
 - ACE inhibitor x 3 months
 - 1 week of pulsed prednisone with rapid taper for COPD flare

Pustular Psoriasis

- Often occurs when known psoriatics are given systemic steroids
- When the steroids are tapered, the psoriasis flares, often with pustules
- Can be life threatening
 - High cardiac output state
 - Electrolyte imbalance
 - Respiratory distress
 - Temperature dysregulation
Psoriasis Aggravators

- Medications
 - Systemic steroids
 - Beta blockers
 - Lithium
 - Hydroxychloroquine
- Strep infections
 - Guttate psoriasis in children
- Trauma
- Sunburn
- Severe life stress
- HIV
 - Up to 6% of AIDS patients develop psoriasis
- Alcohol for some
- Smoking for some

Case

- 67M underwent an elective saphenous vein phlebectomy for asymptomatic varicosities
- 4d post op, he develops erythema around the wound.
- Ulceration continues to expand despite multiple debridements and broad spectrum antibiotics.
- Wound cultures are negative
- 3 weeks later, he is transferred to UCSF and a dermatology consultation is called
- Tmax 104, WBC 22

The flesh eating leg ulcer.
Pyoderma Gangrenosum

- Rapidly progressive (days) ulcerative process
- Begins as a small pustule which breaks down forming an ulcer
- Undermined violaceous border
- Expands by small peripheral satellite ulcerations which merge with the central larger ulcer
- Occur anywhere on body
- Triggered by trauma (pathergy) (surgical debridement, attempts to graft)
Pyoderma Gangrenosum

• 50% have no underlying cause
• Associations (50%):
 – Inflammatory bowel disease (1.5%-5% of IBD patients get PG)
 – Rheumatoid arthritis
 – Seronegative arthritis
 – Hematologic abnormalities (AML)

Pyoderma Gangrenosum

• Workup
 – Skin biopsy for H&E and culture
 – Rheumatoid factor
 – SPEP/UPEP
 – ANCA (ulcers of Wegener granulomatosis can mimic PG)
 – Colonscopy (r/o IBD)
 – Peripheral smear, Bone marrow biopsy (r/o AML)
Pyoderma Gangrenosum

Treatment

• AVOID DEBRIDEMENT
• Refer to dermatology
• Treatment of underlying disease may not help PG
 – Topical therapy:
 • Superpotent steroids
 • Topical tacrolimus
 – Systemic therapy:
 • Systemic steroids
 • Cyclosporine or Tacrolimus
 • Cellcept
 • Thalidomide
 • TNF-blockers (Remicade)

Common Benign Dermatoses in the Hospital

• Miliaria crystallina
• Grovers Disease

Miliaria

• Miliaria refers to sweat duct occlusion
• Common in situations that induce sweating- warm environments, febrile illness, drugs, etc
• Occurs at different levels in the skin
• Miliaria
 – Crystallina- intra or sub stratum corneum
 – Rubra- malpighian layer (intraepidermal)
 – Profunda- rupture if intradermal duct and inflammation
Miliaria Crystallina

http://dermatlas.med.jhmi.edu/derm/index

Grovers Disease (transient acantholytic dermatosis)

- Sudden eruption of papules, papulovesicles; often crusted
- Mid chest and back
- Itchy
- Middle aged to older men
- Etiology unknown- heat, sweating
- Risk factors: hospitalized, febrile, sun damage
- Transient
- Treatment: topical steroids (triamcinolone 0.1% cream); get patient to move around