Under Pressure: Highs, Lows, and the Fading of Vision

17 February 2011
Jonathan C. Horton
http://www.ucsf.edu/hortonlab

Intracranial Hypertension: What’s New?

- The Panoptic
- Intracranial Hypertension Without Papilledema
- Stenting of the Transverse Sinus
- Bariatric Surgery: Ultimate Cure for Pseudotumor Cerebri
- Sunken Eyes, Sagging Brain Syndrome

The Panoptic
16-Year-Old Taking Tetracycline 500 mg bid for 4 Months

Opening Pressure ~ 600 mm water
Intracranial Hypertension Without Papilledema

205 pound, 5' 5" woman with intractable headache since 2007
Lumbar Puncture History:

2008: 460 mm water (sitting)
 420 mm water
 430 mm water

3/2009: 330 mm water (by Carson "one pass" Lawall MD)

5/2010: 360 mm water (closing pressure 160 mm water, headache improved from 6.5/10 to 4/10)

7/2010 280 mm water (closing pressure same; headache unchanged at 6-7/10)

8/2010 270 mm water: closing pressure 180 mm water; headache improved from 5/10 to 3/10)
Stenting of the Transverse Sinus

Headache after Shunting

Cerebral Venography with Manometry

Below Stenosis

Transverse Sinus Pressure (mmHg)

Above Stenosis

压力梯度

Stenosis

Halmagyi et al, AJNR, 2011 (in press)
Venous and CSF pressures

<table>
<thead>
<tr>
<th>Sagittal sinus pre-stent (mmHg)</th>
<th>Sagittal sinus post-stent (mmHg)</th>
<th>Gradient pre-stent (mmHg)</th>
<th>Gradient post-stent (mmHg)</th>
<th>CSF pre-stent (mmH2O)</th>
<th>CSF post-stent (mmH2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34* (15-94) (N=46)</td>
<td>16** (6-33) (N=44)</td>
<td>20 (6-41) (N=46)</td>
<td>0.7 (0-14) (N=46)</td>
<td>321 (250-730) (N=36)</td>
<td>220 (130-390) (N=4)</td>
</tr>
</tbody>
</table>

* 462 mm H2O ** 218 mm H2O

Significance of Venous Sinus Stenosis?

- **Stenosis in collapsible transverse sinus**
- **Venous Outflow Obstruction**
- **Venous Hypertension**
- **Decreased CSF Absorption**
- **Increased ICP**

Outcome of Transverse Sinus Stents

- Resolution of papilledema 45/46*
- 3/46 have ongoing headache, but normal pressures on venography post 1 stent
- 43/46 symptom free
- Follow-up 6 months to 9 years (mean 24 months)

*Complications: 1 death, 1 subdural hematoma requiring emergency craniotomy

Bariatric Surgery: Ultimate Cure for Pseudotumor Cerebri
320 pounds
30 Sept 2009

37 neuro-op exams
35 visual field studies
5.8 kg of diamox

290 pounds
17 Mar 2010
(3 weeks after surgery)
Roux-en-Y
Proximal Gastric Bypass

B₁₂ deficiency
1% mortality rate

192 pounds
11 Feb 2011

Metabolic/Bariatric Surgery Worldwide 2008
Henry Buchwald - Danette M. Olsen
Sunken Eyes, Sagging Brain Syndrome

23-year-old woman with ruptured basilar aneurysm, treated with clipping and a ventriculoperitoneal shunt

At age 38, with severe corneal exposure OU

Progressive enophthalmos: Hertel’s readings: 6 mm OU

Limited ductions; small exotropia
25-year-old man injured in a car accident 4 years earlier, with intraventricular hemorrhage, treated with ventriculo-peritoneal shunt. History of progressive enophthalmos, recurrent conjunctivitis, and diplopia with limited versions.

CT performed right after accident

CT five years later
Control Subjects (n = 10)

right orbit: $24.6 \pm 3.3 \text{ cm}^3$
left orbit: $23.9 \pm 2.7 \text{ cm}^3$

Patient #1:
right orbit: 32.1 cm^3
left orbit: 32.6 cm^3

Patient #2:
right orbit: 32.6 cm^3
left orbit: 35.9 cm^3

Patient #2
(at time of accident)
right orbit: 28.5 cm^3
left orbit: 29.3 cm^3

Patient #2, T1-weighted with gad showing signs of intracranial hypotension
Before Shunt Repair

One Week after Shunt Repair

Refloated brainstem

Dural gad enhancement less
Hwang et al, Ophthalmology 2011 (in press)

- Overshunting can cause progressive enophthalmos from expansion of orbital walls, with strabismus and limited versions.
- Restoration of normal intracranial pressure produces immediate, modest benefit.
- “Non-defensive” skull bones are capable of remodeling in response to pressure gradients.
Lunch!