Case #1

81-year-old woman

- February 2008:
 - 3 years of gradually progressive gait imbalance
 - no vertigo, dizziness or paresthesias
 - etiology unclear on examination
 - MRI scans of the brain, cervical spine and eventually lumbar spine were non-diagnostic.

- Video of history and gait at UCSF

Exam:

- old absent right ankle jerk
- vibration was absent (toes), mildly decreased (ankles)
- proprioception mild to moderately decreased at her toes
- Romberg immediately after standing only mildly unsteady
- unable to tandem; usual gait some initial freezing, then mild-moderately increased base
Question #1

The most likely mechanism contributing to the bulk of her incapacitation is which of the following:

A. gait apraxia
B. gait ataxia
C. higher level gait disorder
D. primary progressive freezing gait
E. tremor

Question #2

After the neurologist’s interview and exam, the most efficient next diagnostic study would be most likely to occur in the:

A. Clinical lab
B. EEG lab
C. EMG lab
D. Neuroradiology suite
E. Sleep lab

Evolution of a concept: Apraxia/higher level gait disorder

ataxia v. apraxia
gait = limb apraxia
low, middle, high gait disturbance levels
gait apraxia v. leg apraxia
Cortico-basal ganglia-thalamo-cortical loop

Higher level gait disturbances

- vary with environment and emotions (vs. predictability of lower level gait disorders)
- more complex than limb apraxia
- categorization:
 - “Inappropriate bizarre postural synergies or foot placement”
 - “Subcortical disequilibrium”
 - “Frontal disequilibrium”
 - “Frontal gait disorder”

Elble “Gait and dementia: moving beyond the notion of gait apraxia”
Freezing Gait: sudden transient block in ambulation

- **Secondary:**
 - common in late Parkinson’s disease
 - also variety of neurodegenerative disorders:
 - PSP
 - MSA
 - CBD
 - “vascular parkinsonism”
 - NPH

- **Primary Progressive Freezing Gait**
 - initially small steps, then affects turning
 - falls 3-10 years after onset; wheelchair within 5 years in most
 - gradually progressive bradykinesia
 - No clear evolution into PD

Oscillations may be:
- a) alternating with agonist and antagonist firing one after the other
- b) synchronous with them firing simultaneously

Physiologic mechanisms of tremor
- mechanical at resonant frequency
- reflex gain and conduction time
- central neuronal pacemakers
- unstable feed-forward or feed-backward loops

Physiologic mechanisms of tremor
- central neuronal pacemakers
- unstable feed-forward or feed-backward loops

rhythmic oscillation manifests as tremor frequency

orthostatic tremor
- Unique clinically
- ...can walk but not stand
- ...high frequency 16 Hz (13-18)
Case #2

74-year-old man with knee buckling and imbalance

Patients
- 10 months: left leg tending to give away
- 12 months: ago bilateral, gradually worsening
- at presentation “10-12 times” good day, “126 times” bad day
- Exercise one day leads to bad day next

Wife
- 10 months: imbalance first few hours each a.m. with gait hesitation
- 30+ years: slight tendency of left>right legs to give away when standing still

Case #2

Probable vascular disease
- 2005-2006 3 episodes less responsive with slow speech, ? TIA
- 2007 more prominent episode of slurred speech and right-sided weakness, probably small stroke
- no further episodes but feels his right side fatigues more quickly than the left

History of sleep apnea but sleeps well 8 hours with CPAP
- naps easily while reading a book or watching television, but with one nap a day, he feels fairly rested and awake
- does not feel that he could fall asleep driving or in a conversation
- denies vivid dreams, dream enactment, sleep paralysis, illusion or hallucinations as he falls asleep or awakens

Numbness of both feet for 3-5 years

Exam:
- reflexes trace except ankles (reinforcement)
- Vibration absent toes, decreased ankles
- Romberg and tandem normal; walked well on toes and heels
- **Gait normal** with mildly increased base, good associated movements, normal ignition and step size, no buckling
- **Standing still:**
 - 5 or 6 subtle momentary give-away jerk-like movements
 - left leg start to buckle at knee, brief loss muscle tone
 - Duration < 1 second, no falls
Question #3

The most likely mechanism contributing to his leg buckling is:

- A. cataplexy
- B. epilepsy
- C. myoclonus
- D. narcolepsy
- E. tremor

Cataplexy
- Most often dramatic
 - General loss of tone lasting seconds
 - Can be partial
- Almost always emotional trigger
- Most often with narcolepsy syndrome
 - 64-75% of narcolepsy patients have some cataplexy
 - Sudden loss of tone + automatic behaviors (somnolence) can be mistaken for partial seizures

Myoclonus
- brief, lightening-like, muscle jerks (EMG bursts 10-50ms, rarely >100ms)
- Phenomenon, not disease
 - Physiologic (hiccups, startle)
- Hereditary and isolated
 - Hyperkplexia
 - Essential myoclonus (1st-2nd decade, responsive to alcohol)
- Hereditary with seizures = progressive myoclonic epilepsies
 - Ataxia + cognitive decline
- Myoclonus without epilepsy
 - With cortical, subcortical and basal ganglia degenerative diseases
 - Post-hypoxic
 - Metabolic (exogenous/endogenous)

Orthostatic myoclonus
- 15 patients with myoclonus in leg muscles on standing only (or a marked increase on standing)
- 12/15 had some underlying central neurologic process
- Gait often looked like ignition failure or ‘apraxia’
- Gait declined gradually over 3-14 years; sudden falls in 25%
- Leg tremulousness noted by patient or physician in 13/15
- Orthostatic tremor was the referral diagnosis in 8/15

Glass, Ahlskog, Matsumoto
"Orthostatic myoclonus: A contributor to gait decline in selected elderly"
Orthostatic Myoclonus

Glass, Ahlskog, Matsumoto
“Orthostatic myoclonus: A contributor to gait decline in selected elderly” Neurology 68: 1826-1830 (2007)

- Less common than orthostatic tremor
- Usually a secondary syndrome, whereas orthostatic tremor usually is primary
- More likely to respond to medications (levitiracetum, clonazepam, valproate)

Outcome:

Patient #1 Orthostatic tremor
unchanged over nearly 2.5 years
- No benefit from Sinemet, pramipexole, clonazepam or gabapentin
- Levetiracetam possibly in future

Patient #2 Orthostatic myoclonus
improved (126 → 10-15 episodes on bad day)
on levetiracetam 750 mg bid