Evaluation and Treatment of Myopia in Childhood

Alejandra de Alba Campomanes, MD MPH
Assistant Professor of Ophthalmology,
Division of Pediatric Ophthalmology and Strabismus
University of California, San Francisco
Director of Pediatric Ophthalmology and Strabismus
San Francisco General Hospital

Myopia
• Prevalence 3-84% in children 5-15 years old (defined as spherical equivalent of -0.5D or more)
• Important systemic associations
• Significant ocular complications
• Direct economic and social burden
• Wide interest in understanding the pathophysiology, prevention and treatment

Talk objectives:
• To provide a systematic approach for the evaluation of myopia in children
• To provide guidelines for the management of myopia in children
• To discuss potential therapeutic approaches for progressive myopia in children

Prevalence Rates of Myopia
Guidelines for prescribing glasses

Case 1

- 5 yo Egyptian obese boy with autism
- “squints left eye in bright light”

- VA OD 20/60 +1.00+1.50x90
 OS 20/400 - 6.50+1.50x90

- XT 45°

Unilateral myopia

Unusual → Always look for underlying cause!

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diopters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age 0-1 year</td>
</tr>
<tr>
<td>Isometropia (similar refractive error in both eyes)</td>
<td></td>
</tr>
<tr>
<td>Myopia</td>
<td>≥ -5.00</td>
</tr>
<tr>
<td>Hyperopia (no manifest deviation)*</td>
<td>≥ +5.00</td>
</tr>
<tr>
<td>Hyperopia with esotropia</td>
<td>≥ +3.00</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>≥ 3.00</td>
</tr>
<tr>
<td>Anisometropia</td>
<td></td>
</tr>
<tr>
<td>Myopia</td>
<td>≥ -2.50</td>
</tr>
<tr>
<td>Hyperopia</td>
<td>≥ +2.50</td>
</tr>
<tr>
<td>Astigmatism</td>
<td>≥ 2.50</td>
</tr>
</tbody>
</table>

Preferred Practice Patterns AAO- September 2007

Weiss AH. Br J Ophthalmol 2003;87:1025-1031

Table 1 Factors associated with development of unilateral high myopia

<table>
<thead>
<tr>
<th>Associated factor</th>
<th>Number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic nerve disorder</td>
<td>15 (31.3)</td>
</tr>
<tr>
<td>Lens abnormality</td>
<td>10 (20.8)</td>
</tr>
<tr>
<td>Retinopathy of prematurity</td>
<td>5 (10.4)</td>
</tr>
<tr>
<td>Family history of high myopia</td>
<td>3 (6.3)</td>
</tr>
<tr>
<td>Bilharziasis</td>
<td>3 (6.3)</td>
</tr>
<tr>
<td>Macular scar/chorioretinal coloboma</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Congenital ptosis</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>N=48</td>
<td></td>
</tr>
</tbody>
</table>

Optic nerve hypoplasia
Case 1: unilateral high myopia

- PERRL, no APD
- IOP 15 OD, 12 OS (iCare)
- c/d 0.3 OD
 0.5 OS, tilted
- Failed patching
- Atropine

Follow-up

- “since we started using atropine, he can’t see at night; he has trouble finding his shoes”
- VA OD 20/60
 OS 20/80 (improved from 20/400)
- XT 18°

Questions

- 1) Amblyopia?
 Unusual for level of myopia
 Strabismic
- 2) Unilateral high myopia
 Normal IOP, no APD, normal fundus
- 3) Nyctalopia
 Atropine?
Case 2

- 4 ½ year old girl with poor vision in the left eye
- VA
 - OD 20/25 +1.25 +0.25 x 88
 - OS 20/600 -7.25 +2.25 x 90
- PERRL, no APD

Diseases associated with myopia

<table>
<thead>
<tr>
<th>Ocular</th>
<th>Systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital Stationary Night Blindness (CSNB)</td>
<td>Stickler syndrome*</td>
</tr>
<tr>
<td>Marshall syndrome</td>
<td></td>
</tr>
<tr>
<td>congenital/non-progressive</td>
<td></td>
</tr>
<tr>
<td>Gyrate atrophy</td>
<td>Weill-Marchesani syndrome</td>
</tr>
<tr>
<td>Prematurity</td>
<td>Cornelia de Lange</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>Marfan syndrome</td>
</tr>
<tr>
<td></td>
<td>Homocystinuria</td>
</tr>
</tbody>
</table>

Anisometric myopia

<table>
<thead>
<tr>
<th>Ptosis</th>
<th>Cataract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital/infantile glaucoma</td>
<td>Vitreous hemorrhage</td>
</tr>
<tr>
<td>Myelinated nerve fiber layer</td>
<td>Optic nerve hypoplasia</td>
</tr>
</tbody>
</table>
Case 2

Exam

Case 3

- 7 month old premature girl s/p bilateral cataract extraction
- Ex- 26 weeks
- Family history of AD cataracts
- Aphakic CLs:

 OD +23.00
 OS +32.00

Partial opacification of entrance pupil by cortical material
Exam under anesthesia

- IOP 18.5 OD 14.5 OS
- CCT 495µ 480µ
- K Ø 10.5 mm 10.6 mm
- C/D 0.6 x 0.5 0.2 x 0.2
- Axial length

Axial elongation-myopia

- Stimulus deprivation
- Prematurity
- Aphakic glaucoma

- Large myopic shift in infant →
 Always rule out GLAUCOMA

Case 4

- 4 year old Hispanic girl with a right eye that is “intermittently crossed”
- Sister wears glasses since age 7

- VA
 OD 20/200 -9.50 + 2.00 x 90
 OS 20/80 -2.50 + 0.25 x 90

- IOP 14 OD, 13 OS
- RXT 14^Δ=RXT’ 8^Δ
Follow-up

- 3 months wearing Rx full time
- VA
 - OD 20/40
 - OS 20/30
- Orthotropic at distance- X 14° =X'8°

Anisometropic Amblyopia

TAKE HOME PEARL!

Spectacles ALONE improve best corrected amblyopic eye visual acuity by about 3 lines, so many patients do not need additional treatment with patching or penalization.

Amblyopia Treatment Study 5

Case 5

- Intelligent 6 year old Asian American boy
- Both parents wear glasses since elementary school
- VA
 - OD 20/20 -4.00 + 1.00 x 90
 - OS 20/20 -4.50 + 1.50 x 90

- Parents want to know what they can do to retard or stop the progression of nearsightedness in their child?
Myopia Risk factors

- Near work activity
- Outdoor activity
- Family history and genetics
- Other environmental factors

Interventions to retard myopic progression

- Atropine
- Pirenzepine
- Undercorrection
- Progressive addition lenses (PALs)
- Bifocals
- Orthokeratology

Glasses

- Undercorrection
 May increase myopia progression
 (Chung et al Vision Res 2002;42:2555-2559)

- COMET trial
 (Correction of Myopia Evaluation Trial)
 found that PALs do not stop progression of myopia at 3 years (≠0.20D)

Contact lenses

- CLAM study
 (Contact Lenses and Myopia Progression)
 small difference between RGPs and soft CLs (but no AL difference; all corneal)

- Orthokeratology (ortho-K) (CRT)
 “46% reduction in axial elongation”
 Mean difference in AL at 2 years: 0.25 D (p=0.012)
Atropine

- Night topical atropine
- Slows progression of low and moderate myopia and axial elongation
- Placebo eyes progressed -1.20 D (±0.69)
- Treated eyes progressed -0.28 D (±0.92)
- After treatment is stopped, treated eyes had a higher rate of myopic progression

Chua et al. Ophthalmology 2006;113:2285-2291

Atropine concerns

- Short-term effects: photophobia, glare, cycloplegia
- Long-term effects:
 - UV exposure (early cataracts, macular degeneration)
 - Loss of accommodation and premature presbyopia
 - Lack of long term follow-up

Pirenzepine

- 2% Pirenzepine ophthalmic gel BID
- Not available in the U.S.
- Effective in slowing myopia over 1-2 year period
- Treatment effect ~ 0.4 diopters (2 years)

Ophthalmol 2005:112:84-91

Outdoor activities

- Many cross-sectional studies
- Higher levels of total time spent outdoors associated with less myopia in:
 - 12 year-old Australian children, rural school children in Taiwan, Singapore teenagers...
 - But not in preschool children in Singapore, adolescents in rural China...
- How about 5 year old kids in San Francisco??
Go, play outside!

Thank you!

• One artist who was myopic and painted without glasses was Paul Cezanne (1839-1906). Myopic spectacles were readily available in his time, but he refused to wear the glasses, saying:

“Take those vulgar things away.”

Alejandra de Alba Campanones, MD MPH
deealba@vision.ucsf.edu
Pediatric Ophthalmology and Strabismus, UCSF
Director of Pediatric Ophthalmology and Strabismus, San Francisco General Hospital