Osteobiologics in Spine Surgery

Basic Science and Mechanisms of Osteobiologics
Clinical Applications-Paradigm for Informed Choice

Spine Day, 2011

Sigurd Berven, MD
Associate Professor in Residence
UC San Francisco

Overview

- Basic Science and Molecular Mechanisms in Spine Fusion
- Composition of Osteobiologics
 - Matrix
 - Cell Biology
 - Proteins and Molecular Biology
- Clinical applications
 - Variability in practice patterns
- Matrix for matching bone graft solutions with patients
 - Data from clinical trials

Disclosures

- Research/Institutional Support:
 - NIH, OREF, AOA, Medtronic, DePuy, AO North America
- Consultancies
 - Medtronic, DePuy, Osteotech, Stryker Biologics, US Spine, Biomet, Orthovita
- Stock:
 - Acculif, Baxano, Providence Medical, Loma Vista Medical, Axis Surgical

Constituents of a Bone Graft Material

Scaffolds
Growth/Differentiation Factors
Cells
Spectrum of Bone Graft Options

- Bone graft extenders
 - Osteoconductive matrices, Demineralized matrices
- Bone graft enhancers
 - Osteopromotive materials (AGF, PDGF)
- Bone graft substitutes
 - Osteoinductive-
 - Recombinant proteins, Demineralized Matrices
 - Osteogenic-
 - Cell-based technologies

Consensus in Clinical Practice

- The presence of variability in clinical practice patterns is a clear indication of the absence of an evidence-based approach to treatment.

Basic Science of Spine Fusion

- The molecular events of osteoneogenesis recapitulate the events of embryogenesis
 - Fracture healing
 - Spine Fusion
Biology of Spinal Fusion

- Discrete stages
 - Hemorrhage
 - Inflammatory
 - Revascularization/regenerative
 - Remodelling/maturation

Fracture Healing

Day 7
Day 14
Day 21
Day 28-35

Cho et al. JBMR, 2002; Einhorn JOT, 2005
Spine Fusion Biology

- Dependent upon
 - Composition of the graft
 - Cells
 - Growth factors
 - Matrix/scaffold
 - Host environment
 - vascularity
 - mechanical environment

Composition of the Graft

Cells
Growth Factors
Matrix

Cellular contribution

- Grafted cells comprise a portion of the final fusion mass
- Grafted cells may also contribute to local inflammation
- release factors that promote angiogenesis and cellular recruitment

Murine inter-transverse fusion
Murine spinal fusion: 1 week

Murine spinal fusion: 2 weeks

HBQ Alkaline phosphatase/TRAP

Y-Chromosome

Track graft derived cells
Murine spinal fusion

Y-chromosome stain: murine fusion

Cells as Trophic Implants

- Autogeneic
 - Marrow-derived
 - Fractionated vs. Unfractionated
- Allogeneic
 - Minimally Manipulated Cells
 - DBM with viable cells
 - Placental/Amniotic tissue derived
 - Synovial derived
 - Processed cells
 - Culture expanded
 - Pre-differentiated cells
Composition of the Graft

Cells
Growth Factors
Matrix

BMP Mechanism

- Members of TGF-beta superfamily
- Secreted as dimers
- proteolytically cleaved to activate

Osteoinductive Materials

Bone: Formation by Autoinduction

Marshall R. Urist
Department of Surgery, University of California Center for Health Sciences, Los Angeles 90024
12 November 1965

Sources of MSCs:

- All mesenchymal tissues
- Peripheral blood
- Bone
- Periosteum
- Endosteum
- Bone marrow
- Muscle
- Mesenchymal Stem Cell (MSC)

Differentiation of MSCs:

OSTEOBLAST

PRE-OB

Fibroblast

Chondrocyte

Muscle
Adipocyte

Stratum

Differentiation Factors

Proliferation Factors

IGFs, TGF-β, BMPs

OSTEOBLAST

PRE

PRE-OB
Recombinant Proteins in the Spine Surgery

- BMP-2
- OP-1
- GDF-5

Class I Clinical Data
- FDA-approved pivotal IDE clinical trial
- Prospective
- Multi-center
- Randomized Control
 - Open ALIF with LT-CAGE® device
 - 136 patients INFUSE® Bone Graft (rhBMP-2/ACS)
 - 143 patients autogenous iliac crest bone graft

Comparison of OP-1 Putty (rhBMP-7) to Iliac Crest Autograft for Posterolateral Lumbar Arthrodesis: A Minimum 2-Year Follow-up Pilot Study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OP-1 Putty</th>
<th>Autograft</th>
<th>Statistical Test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Success</td>
<td>75/101</td>
<td>94/104</td>
<td>χ²</td>
<td>0.021</td>
</tr>
<tr>
<td>Radiographic Success</td>
<td>7/11</td>
<td>6/40</td>
<td>Fisher’s Exact Test</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: Clinical success requires a 20% or greater improvement in Oswestry scores from preoperative. Overall radiographic success requires an assessment of less than 5° of angular motion and less than 2 mm of translational movement on lateral flexion and extension radiographic views and bridging bone between the transverse processes on anteroposterior radiograph.

Comparison of BMP-2 vs ICBG in a single-level instrumented posterolateral fusion model

Clinical Outcomes and Fusion Success at 2 Years of Single-Level Instrumented Posterolateral Fusions With Recombinant Human Bone Morphogenetic Protein-2/Compression Resistant Matrix Versus Iliac Crest Bone Graft

John E. Dimar, MD, Steven D. Storlason, MD, Kenneth J. Busnach, MD, and Mark V. Cameron, MD

Comparison of BMP-2 vs ICBG in a single-level instrumented posterolateral fusion model

FDA IDE study

Fusion rates 73% vs 88% (p<0.05) vs ICBG

No difference in clinical outcomes at any timepoint
BMP in Adult Deformity

- Luhmann et al: Spine 2005
 - Posterior at 2mg/ml with BCP (4-36mg/level)
 • 93% fusion overall
 • 71-73% in thoracic spine
 - Posterior at 2mg/ml with BMP and CRM (40mg/level)
 • 100% fusion
 - Anterior with femoral ring at 1.5mg/ml (6-12mg/level)
 • 96% fusion rate
- Fusion defined by plain films
 - Scores lower on subset of patients with CT available
Concerns about BMP in Spine Surgery

- **Cost:**
 - 40mg/level with average of 6.5 levels
 - 20+ large kits/case
- **Anterior use with allograft**
 - Concern regarding early phase of graft resorption
 - Consider use of non-resorbable cage
- **Heterotopic bone formation with TLIF/PLIF**
- **Retropharyngeal swelling in cervical spine**

67 pts treated with stand-alone PLIF and paired titanium cages
- Randomized between ICBG and BMP-2

Fusion Rates: No statistical difference
- ICBG: 77.8%
- BMP-2: 92.3%

Clinical results similar at 2 years
- Study enrollment suspended due to CT evidence of bone posterior to the cages

36 consecutive pts treated with ALIF and stand-alone FRA
- Nonunion rate with ICBG=36%
- Nonunion rate with BMP-2=56%
- Noted early and aggressive resorption of FRA in these non-instrumented cases

Bone was identified posterior to the implants in the ICBG and BMP-2 groups

Risk factors for bone posterior to the cages:
- Residual segmental anterolisthesis
- <3mm cage recession

No clear clinical sequelae identified
Cervical Interbody

- Cervical Interbody applications

INFUSE® Bone Graft in ACDF

ACF + INFUSE® Bone Graft

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterman*</td>
<td>2007</td>
<td>Spine J</td>
</tr>
<tr>
<td>Vaidya*</td>
<td>2007</td>
<td>E Spine J</td>
</tr>
<tr>
<td>Perri</td>
<td>2007</td>
<td>Spine J</td>
</tr>
<tr>
<td>Smucker</td>
<td>2006</td>
<td>Spine</td>
</tr>
<tr>
<td>Shields</td>
<td>2006</td>
<td>Spine</td>
</tr>
<tr>
<td>Boakye*</td>
<td>2005</td>
<td>J Neuro Spine</td>
</tr>
<tr>
<td>Lanman*</td>
<td>2004</td>
<td>Neuro Focus</td>
</tr>
<tr>
<td>Baskin*</td>
<td>2003</td>
<td>Spine</td>
</tr>
</tbody>
</table>

- 282 total patients
- 97-100% fusion success*

Variation in:
- Dose: 0.4 – 1.4 cc/level
- Placement: In and/or around interbody
- Techniques: ACDF/ACVF; single or multi-level
- Interbody Spacer: Bone, PEEK, resorbables

For more information contact our Office of Medical Affairs

WARNING: When anterior cervical spinal fusions were performed with INFUSE Bone Graft, some cases of edema have been reported within the first post-operative week. In some of these cases, this swelling has been severe enough to produce airway compromise.

Composition of the Graft

Cells
Factors
Matrix
Graft Matrix
- provides structure
- occupies space
- provides a surface for adhesion of bone forming cells
- releases osteoinductive agents as it is being broken down by host osteoclasts.

Structure Drives Biology
- Structure influences
 - Cellular integration
 - Vascularization
 - Fluid/Nutrient Transport
 - Time-appropriate cellular resorption
- Allograft/Synthetic Matrices

Constituents of a Bone Graft Material
- Scaffolds
- Growth/Differentiation Factors
- Cells
Clinical Applications

Informed Decisionmaking in Bone Graft Options

Levels of Proof

• Beyond a Reasonable Doubt
 – Randomized prospective clinical trial

• Preponderance of evidence
 – Preclinical studies
 – Prospective cohort studies; retrospective review
 – Clinical experience

Burden of Proof for Bone Graft Materials

• Hierarchy of credibility:
 – Cell culture assays of bone nodules/markers
 – Athymic rat submuscular assay of osteoneogenesis
 – Rabbit Ulnar defect
 – Rabbit Spine model
 – Large animal long bone or spine model
 – Non-human primate spine
 – Human clinical trials

Questions for Consideration in Evaluating a Bone Graft Product

• What is the current highest level of proof to support the use of the product as a bone graft substitute in the spine?

• As a bone graft enhancer/extender?

• How does the product compare to alternatives?
 – Safety
 – Clinical Efficacy
 – Price
Informed Choice

- Application of the right technology and option to the appropriate clinical needs
- Clinical needs defined by:
 - Host considerations
 - Age
 - Previous surgery
 - Location
 - Comorbidities
 - Surgical Factors
 - Length of fusion
 - Revision vs Primary
 - Interbody vs posterolateral

Bone Graft Applications:

<table>
<thead>
<tr>
<th>Biology</th>
<th>Poor</th>
<th>Moderately Demanding</th>
<th>Most Demanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Least Demanding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bone defect size

Choosing the Right Tool

Selective Application

- When do we need our most potent osteobiologies?
- When are more potent osteobiologics inappropriate?
 - Clinical efficacy
 - Cost
 - Complication profile
Biologics Applications:

<table>
<thead>
<tr>
<th>Poor Biology</th>
<th>High Grade Surgery</th>
<th>Good Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone defect size</td>
<td>Bone defect size</td>
<td>Bone defect size</td>
</tr>
<tr>
<td>Posterolateral Fusion</td>
<td>TLIF/PLIF</td>
<td>Adolescent Idiopathic Scoliosis</td>
</tr>
<tr>
<td>ACDF</td>
<td>ALIF</td>
<td>Osteoconductive Matrixes</td>
</tr>
</tbody>
</table>

Osteoconductive/Osteoinductive Matrices

- High Grade Spondylolisthesis
- Revision Adult Deformity
- Pseudarthrosis
- Osteoinductive Matrixes
- Adolescent Idiopathic Scoliosis

Osteoinductive Matrices

- Revision posterolateral fusion
- High Grade Spondylolisthesis
- Revision Adult Deformity
- Pseudarthrosis
- Osteoinductive Matrixes
- Adolescent Idiopathic Scoliosis

Osteoconductive Matrices

- Revision posterolateral fusion
- High Grade Spondylolisthesis
- Revision Adult Deformity
- Pseudarthrosis
- Osteoconductive Matrixes
- Adolescent Idiopathic Scoliosis

Bone defect size

- Small
- Large

- Posterolateral Fusion
- TLIF/PLIF
- Adolescent Idiopathic Scoliosis

- Osteoconductive Matrices
Adolescent Idiopathic Scoliosis

- Bone Graft Choices
 - Local autograft for thoracic scoliosis
 - Iliac crest for extension to L5 or S1
 - Allograft as extender

- Betz et al: Spine 2005
 - Randomized prospective study allograft vs no graft
 - Multisegmental hook constructs
 - Pseudarthrosis defined as broken implant or gap on plain films with pain
 - 1/37 with allograft
 - 0/39 with no graft

Biologics Applications:

<table>
<thead>
<tr>
<th>Poor</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoinductive</td>
<td>Osteoconductive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biologics Applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision posterolateral</td>
</tr>
<tr>
<td>Smoker/Diabetic</td>
</tr>
<tr>
<td>Osteoinductive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adolescent Idiopathic Scoliosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilevel adult deformity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biologics Applications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision posterolateral</td>
</tr>
<tr>
<td>Smoker/Diabetic</td>
</tr>
<tr>
<td>Osteoinductive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adolescent Idiopathic Scoliosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilevel adult deformity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone defect biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Small</td>
</tr>
</tbody>
</table>
Conclusion

• There is tremendous variability in the choice of bone graft substitutes for common spine applications
• Decision-making on bone graft materials is often made with incomplete data
• Matching graft choice with patient need may provide a framework for informed choice
• Future use of Incremental Cost Effectiveness Analysis to evaluate utility of osteobiologics in the spine may lend insight into cost-effective solutions

Thank You

UCSF Center for Outcomes Research