Neonatal Hypoxemic Respiratory Failure and Refractory PPHN

Steven H. Abman, MD
Professor, Pulmonary Medicine
Director, Pediatric Heart Lung Center
University of Colorado School of Medicine
and The Children's Hospital,
Aurora, Colorado

Hypoxemic Respiratory Failure in the Term Newborn

Idiopathic PPHN
Meconium Aspiration

Pneumonia
Congenital Diaphragmatic Hernia

Persistent Pulmonary Hypertension of the Newborn: Failure of Postnatal Adaptation

Fetus (Birth) - Neonate
PVR

Normal

PPHN

Pathogenesis of PPHN

Injury

- Hypertension
- Hypoxia
- Inflammation
- Genetic Factors
- Other Stimuli:
 - NSAIDs
 - SSRI
 - Smoking
 - Maternal diabetes
 - Abnormal placenta

Altered Structure

- SMC Hyperplasia
- Fibroblast Proliferation
- Altered Matrix Production
- Impaired angiogenesis (hypoplasia)

Altered Function

- Dilators
- Constrictors
- Altered SMC Responses
Hypothesis: Endothelial Cells Modulate Vascular Growth and Function in the Developing Lung

- Nitrile Oxide
- Endothelium-1
- Smooth Muscle Cell

- Vasodilation
- Angiogenesis
- Survival
- Growth
- SMC Proliferation
- Matrix Production

Role of NO in the Perinatal Lung

- Endogenous NO at Birth
- Inhaled NO

Inhaled NO in PPHN

- Sustained Improvement in Oxygenation
- Reduced ECMO Use (Denver)

Inhaled NO Reduces the Need for ECMO Therapy in Term Newborns with PPHN

- "…………an apparent 40% treatment failure rate…………"

Mechanisms Underlying Poor Responses to Inhaled NO

- Primary Disease and Pathophysiology
- Poor Lung Inflation
- Anatomic Cardiac Disease
- Right Ventricular Failure
- Left Ventricular Dysfunction
- Structural Disease (developmental lung disease, pulmonary venous obstruction, severe remodeling)
- Biochemical: Increased PDE5 activity, increased O_2^- and ET production, others.

Cardiopulmonary Interactions in PPHN

- Pulmonary Vascular Disease
- Right-to-left shunting at DA and FO
- Hypoxia, acidosis
- RV pressure overload
- LV dysfunction
- Hypothesis: Endothelial Cells Modulate Vascular Growth and Function in the Developing Lung

- Endothelial Cell
- Nitrile Oxide
- Endothelium-1
- Smooth Muscle Cell

- Vasodilation
- Angiogenesis
- Survival
- Growth
- SMC Proliferation
- Matrix Production

- Vasoconstriction
- SMC Proliferation
- Matrix Production

- Nitric Oxide
- Angiogenesis
- Survival
- Growth
- SMC Proliferation
- Matrix Production

- Endothelin-1
- Angiogenesis
- Survival
- Growth
- SMC Proliferation
- Matrix Production

- Inhaled NO in PPHN

- Sustained Improvement in Oxygenation
- Reduced ECMO Use (Denver)

- Inhaled NO Reduces the Need for ECMO Therapy in Term Newborns with PPHN

- "…………an apparent 40% treatment failure rate…………"

Mechanisms Underlying Poor Responses to Inhaled NO

- Primary Disease and Pathophysiology
- Poor Lung Inflation
- Anatomic Cardiac Disease
- Right Ventricular Failure
- Left Ventricular Dysfunction
- Structural Disease (developmental lung disease, pulmonary venous obstruction, severe remodeling)
- Biochemical: Increased PDE5 activity, increased O_2^- and ET production, others.
PVR Increases at Lung Volumes Below and Above FRC

HFOV Augments the Response to Inhaled NO in Neonatal Hypoxemic Respiratory Failure and PPHN

Improved Lung Recruitment with HFOV in a Newborn With CDH

Changes in PaO₂ in Severe PPHN in CDH: Combined Effects of iNO with HFOV

Pulmonary Edema During Inhaled NO Therapy in an Infant with BPD and LV Dysfunction

Abnormal NO-cGMP Cascade in PPHN

Birth-Related Stimuli:
(O₂, Ventilation, Shear Stress)
Pulmonary Vascular Effects of Acetylcholine, BAY 41-2272 and Sildenafil in PPHN

![Graph showing percent change in PVR for Acetylcholine, Sildenafil, and BAY 41-2272](image)

*P < 0.05 and **P < 0.01 between Day 1 & Day 5; #P < 0.01 between BAY 41-2272 day 5 & sildenafil day 5.

(Steinhorn et al, J Pediatr, 2009)

Intravenous Sildenafil Improves Oxygenation in Neonates with PPHN

![Graph showing change in oxygenation](image)

Intravenous Sildenafil Improves Oxygenation in Neonates with PPHN

Non-cGMP Signaling: Therapeutic Targets in PPHN

![Diagram showing endothelial cell, GTP, cGMP, PDE, Sildenafil, and vasodilation](image)

Alveolar Capillary Dysplasia

![Image of alveolar capillary dysplasia](image)

Pulmonary Vein Stenosis

![Image of pulmonary vein stenosis](image)

ATP Binding Cassette Protein (ABCA3) Deficiency

![Image of ABCA3 deficiency](image)
Developmental Lung Diseases and Refractory Pulmonary Hypertension

- Bronchopulmonary Dysplasia
- Alveolar Capillary Dysplasia (ACD)
- ACD with Misalignment of Veins
- Lung Hypoplasia (“primary” or “secondary”)
- Surfactant Protein Abnormalities(*)
 - SPB deficiency
 - SPC deficiency
 - ABCA3
 - TTF-1/Nkx2
- Pulmonary Intertstitial Glycogenosis
- Pulmonary Alveolar Proteinosis
- Pulmonary Lymphangiectasia
- Pulmonary Alveolar Proteinosis
- Pulmonary Venous Obstruction (PVS, PVOD, associated with anatomic heart disease)

Diagnostic Approach

- Aggressive management of respiratory disease
- Complete pulmonary evaluation:
 - Radiographic
 - Chest x-ray
 - Chest CT
 - Bronchoscopic (structural, dynamic obstruction, BALF)
 - Aspiration Evaluation (pH and impedance probes, barium studies)
- Genetic studies
- Cardiac Catheterization
- Lung Biopsy

Diagnosis-Related Mortality in ILD

<table>
<thead>
<tr>
<th>Category</th>
<th>Age at Biopsy, mo</th>
<th>Mean ± SD (range)</th>
<th>% Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse developmental disorders</td>
<td>0.7 ± 0.2 (0.1-1.2)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Lung growth abnormalities</td>
<td>2.33 ± 0.3 (0.3-22)</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Pulmonary interstitial glycogenosis</td>
<td>1.9 ± 0.6 (0.0-3.0)</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Nonspecific cell hypoplasia of infancy</td>
<td>1.6 ± 0.7 (0.1-7.0)</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Sulfuric dysfunction (all)</td>
<td>3.8 ± 0.6 (2.2-22)</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>ABCA3 mutations</td>
<td>8.8 ± 3.0 (0.0-22)</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Disorders of the normal host</td>
<td>1.7 ± 1.2 (0.2-24)</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Disorders resulting from systemic disease processes</td>
<td>10.5 ± 3.6 (1-22)</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Disorders of the immature-primed host</td>
<td>15.4 ± 1.3 (1.3-24)</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Disorders manifesting as ILD</td>
<td>7.3 ± 2.3 (0.2-24)</td>
<td>28%</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

- Impaired NO-cGMP signaling contributes to the pathophysiology of PPHN;
- Although inhaled NO therapy is an effective therapy for PPHN, success is dependent on ventilator strategies and cardiac performance;
- Adjunct therapies (eg, sildenafil, bosentan) to augment NO responsiveness or to treat severe PH needs further study;
- Novel interventions are needed to enhance lung vascular and alveolar growth in PPHN associated with lung hypoplasia.

Pediatric Heart Lung Center

Clinical Team

Lab Group