Most thyroid nodules are benign

- Thyroid nodules occur in 77% of the world’s population
- Palpable thyroid nodules occur in about 5% of women and 1% of men in the US
- More common in women, advancing age, iodine deficiency, family history and radiation exposure
- High resolution ultrasound can detect nodules in 19-67%, with increasing rates in women and the elderly

(Tuttle and Lehoeuf, Endo Metab N Am) (ATA revised guidelines for Thyroid Nodules, Thyroid 2009)

Thyroid cancer is now the most rapidly increasing cancer in women

- Approximately 44,670 new cases of thyroid cancer were diagnosed in 2010
- Yearly incidence 3.6 per 100,000 in 1973 --> 8.7 per 100,000 in 2002
- Most of the change is attributed to increases in papillary thyroid cancer, which comprises 90% of all thyroid cancers
- Almost half of the rising incidence consisted of tumors <1cm
- 1,690 deaths from thyroid cancer predicted this year

(Gosnell and Clark, Management of thyroid nodules, in Cameron’s Current Surgical Therapy, 10th ed, 2010)
Thyroid nodules: History

- Symptoms of hypothyroid, hyperthyroidism
- Local symptoms in the neck
 - dysphagia, dyspnea, dysphonia
 - neck pain
- Family history of thyroid or other cancers
- Exposure to ionizing radiation to the head and neck

Physical exam

- Vitals
- Eye signs
 - stare, lid lag, exophthalmos
- Visible, palpable nodules
 - fixed mass, tenderness
- Deviation of midline structures
- Cervical lymphadenopathy
- Cardiac
- Extremities
 - pretibial myxedema
 - tremor
- Skin
 - rash, cutaneous lichen amyloidosis
 - Pemberton’s sign

Most thyroid cancers are biochemically “silent”

- TSH is the signal best test to assess for thyroid dysfunction
- T3, T4 as indicated
- Thyroglobulin
 - Suh et al., Serum thyroglobulin is a poor diagnostic biomarker of malignancy in follicular and Hurthle-cell neoplasms of the thyroid.
 - 366 pts with follicular/Hurthle cell lesions
 - Tg levels>500μg/L had positive predictive value of 0.75

(Suh et al., Am J Surg 2010 Jul;200:41)
Thyroid nodules: imaging

- Ultrasound
 - Better than palpation and scintigraphy for thyroid nodules and cervical lymph nodes
 - Inexpensive, non-invasive
 - Provides valuable characteristics of the nodule (calcifications, vascularity, borders)
 - Cannot distinguish between benign and malignant lesions

Ultrasound for the Endocrine Surgeon, Surgery 2005, 138(6):1193

Value of preoperative ultrasound

Unsuspected disease was found by ultrasonography in 52 patients (34%) and altered the operative approach to include dissection of the central lymph nodes in 32 patients, ipsilateral nodes in 21 patients and contralateral nodes in 9 patients

(Kouvaraki et al, Surgery 134:946, 2003)

Thyroid nodules: ultrasound guided FNA

(J Mechanick, Endocrine Surgery, 2004)

FNA biopsy for thyroid nodules: when is it indicated??

- Most do not advocate biopsy of all thyroid nodules
 - >1cm, worrisome ultrasound findings, rapid enlargement, family history or radiation exposure

(Cooper et al. Revised ATA guidelines 2009)
Thyroid scintigraphy: Limited role!

- Historically, used to characterize thyroid nodules by their ability to take up isotope, as a way to distinguishing benign from malignant
 - up to 80% of thyroid nodules are “cold”, only 20% of these are malignant
- Now, useful in patients with biochemical hyperthyroidism
 - distinguish between Graves’ disease, toxic adenoma and Plummer’s disease (toxic MNG)

Other imaging modalities

- Useful to evaluate for retrosternal extension, tracheal deviation/compression, locally advanced disease
 - CT scan
 - avoid iodinated contrast in patients that may need RAI treatment
 - MRI

Retrosternal goiter
FNA biopsy for thyroid nodule

- **FNA biopsy**
 - Benign (70%)
 - Malignant (<10%)
 - Indeterminate/suspicious (5-10%)
 - Nondiagnostic (<10%)

- **> 90% accurate**
- **Total thyroidectomy (lobectomy)**
- **“Diagnostic” thyroidectomy**
- **10 – 50% risk of cancer**

Up to 25-30% of FNA indeterminate/nondiagnostic
Need for more accurate diagnostic tests than FNA cytology!

FNA: typical papillary thyroid cancer

- **“Orphan Annie eyes”**

Indeterminate FNA cytology

- Follicular cell lesion
- Hurthle cell lesion

Indications for thyroidectomy in patients with thyroid nodules

- FNA suspicious/malignant findings
- Worrisome nodules despite benign FNA findings
 - >4cm, growing
- Local compression
- Retrosternal extension
- Family history of thyroid cancer and exposure to ionizing radiation
- Selected cases of hyperthyroidism (toxic MNG, Graves’ disease)
- Cosmesis
The role of diagnostic surgery

- Indicated for follicular or Hurthle cell neoplasms
- Indicated for patients with worrisome clinical findings
 - growing nodules, risk factors for thyroid cancer
- Should be considered for nodules > 4cm

The role of intraoperative frozen section

- useful for nodules suspicious for papillary thyroid cancer (often FVPTC) (Livolsi, Surgical Pathology of the Thyroid, 2nd ed, 2007)
- useful for cervical lymph nodes, parathyroid glands
 - However frozen section can be inaccurate (Guerrero et al, Endocr Practice 2009;15(5):454). Consider PTH aspirate

What’s new?

- Molecular markers
 - Fillie et al, Diagnostic Cytopathology 2008;36(6):438
 - “Utilization of ancillary studies in thyroid fine needle aspirates: A synopsis of the National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference”
- Prophylactic surgery for patients with mutations in the RET proto-oncogene
- New surgical approaches
 - “Minimally invasive”
 - Laparoscopic, robotic axillary approach
- Surgical adjuncts
 - Nerve monitoring, sentinel node mapping

Summary

- Thyroid nodules are common, and most are benign
- Streamlined work-up: TSH, ultrasound-guided FNA
- Pitfalls:
 - coincidental primary hyperparathyroidism
 - unrecognized retrosternal goitre
 - unrecognized familial syndrome
 - locally advanced cancers
Thank you