Role of Non-Implantable Defibrillators in the Management of Patients at High Risk for Sudden Cardiac Death

29 October 2011
Update in Electrocardiography and Arrhythmias

Zian H. Tseng, M.D., M.A.S.
Associate Professor of Medicine in Residence
Cardiac Electrophysiology Section
University of California, San Francisco
zhtseng@medicine.ucsf.edu

Disclosures

- Major
 - Research grant: NIH/NHLBI R01 HL102090
- Minor
 - Biotronik: Honorarium
 - St. Jude Medical: Honorarium
Sudden Cardiac Death: Background

- 1/3 of SCA events are unwitnessed
- Impossible to restrict the definition of SCA to documented VF since rhythm at clinical presentation is unknown in many cases
- Operational criteria for SCA and SCD do not rely upon the cardiac rhythm at the time of the event
- Duration of symptoms (< 1 hr) prior to SCA generally defines the suddenness of death

Sudden Cardiac Death: Definitions

- Out-of-hospital occurrence of a presumed sudden pulseless condition in the absence of evidence of a noncardiac condition (e.g., pulmonary, CVA, PE) as the cause of collapse
- WHO definition of SCD:
 - Unexpected death within 1 h of symptom onset if witnessed
 - Unexpected death within 24 h of having been observed alive and sx-free if unwitnessed
Magnitude of Sudden Cardiac Death in the U.S.

- AIDS
- Breast Cancer
- Lung Cancer
- Stroke
- SCD

deaths/year

3 2002 Heart and Stroke Statistical Update, American Heart Association.
4 Circulation, 2001;104:2158-2163.

SCD Rates in the Developed World

- AGE-ADJUSTED RATE/100,000 POPULATION

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Etiology of Sudden Cardiac Death

Incidence of SCD in Specific Populations

GROUP

- General population
- Patients with high coronary-risk profile
- Patients with previous coronary event
- Patients with EF < 35%, congestive heart failure
- Patients with previous out-of-hospital cardiac arrest
- Patients with previous MI, low EF and VT

[Graph showing incidence of sudden cardiac death in different groups with corresponding risk factors and outcomes]
SCA Survival

- Survival from OOH SCA remains poor
- In most studies, <10% of pts in any cardiac rhythm and 20% with VF survive
- In-hospital SCA similar survival (14-20%)
- Although several interventions can improve the likelihood of VF resuscitation, the single most important is early delivery of an external electric shock
- Early defibrillation is consistently associated with greater likelihood of survival

Resuscitation from VF

- Early time to defibrillation is key to survival

Resuscitation from VF

Automated External Defibrillator

- Assess cardiac rhythm and advise on whether to deliver shock
- Modern AEDs 2-4 kg, <$1000
- AED standard: >90% sensitivity, >95% specificity for coarse VF
- 120-360 J, biphasic waveform
- Only effective for VT or VF, does not treat asystole (pace)
AED Allocation

- VF/VT arrests are declining relative to nonshockable rhythms, but still account for up to 100,000 deaths/yr
- Early resuscitation by AEDs can have significant impact on public health
- Increases pool of potential rescuers
- Goal: maximize efficient distribution of AEDS to minimize cost, resource allocation, programmatic support
- EMS, police, firefighters, public locations, hospitals, homes

AED Use by EMS

- 1980’s-1990’s: EMS first responders
- Meta-analyses: EMS AED programs → 9% increase in SCA survival
- However, in some reports, SCA survival due to VF did not improve despite reductions in the time to defibrillation with AED, possibly due to CPR interruption
- Before and after training in “minimally interrupted CPR” 1.8% vs. 5.4% survival to hospital discharge
AED Use by Police

- Police are often first responders to SCAs
- MN pilot program in 1988: police defibrillated pts ~5.5 min after collapse
- Survival from witnessed VF to hospital D/C: 46% (most neurologically intact)
- Survival from SCA not due to VF: 5%
- Pittsburgh and Miami → increased SCA survival, other cities no benefit
- Key to success: committed city and police leaders with goal of early police response to medical calls

Public Access AEDs

- SCA clustering in public transit terminals, malls, sports venues
- PAD (Public Access Defibrillation) trial, NEJM 2004:
 - 1,000 North American communities, 526 SCAs treated
 - Survival to discharge: 23% vs 14% for AED + CPR trained lay responders vs CPR only trained responders
 - Cost effectiveness: $35k-$57k per QALY, similar to dialysis
- Cohort studies: 13,000 SCAs → Survival to hospital discharge 38% versus 9% for AED shock vs. CPR only
- Nationwide distribution of AEDs in public places in Japan 2005-07: mean time to shock halved, survival w/o neurologic sequelae tripled
AED Use in Private Homes

Most cardiac arrests occur at home
HAT (Home External Defibrillator Trial) Bardy G et al. NEJM 2008
- 7,001 pts with anterior MI randomized to home AED vs. no AED
- All pts had spouse/companion undergo CPR training
- Median F/U 37 mo → no difference in mortality (6.4% vs. 6.5%)
- Only 38% of deaths due to VT/VF

Why negative results?
- Less power due to substantially lower overall mortality and SCA than anticipated
- All received CPR training
- Only 50% of home SCA were witnessed

AED Limitations

- AEDs require the presence of a bystander
- Only ~50% of SCAs are witnessed
- AEDs require interruptions in CPR, typically longer than with manual defibrillators
- Cost: programs, support, distribution, upkeep, training
Wearable Defibrillator Vest

- 18 seconds total time to shock; overall efficacy > 99%

LifeVest Shock Terminates VF
Medicare Coverage of ICDs

- EF≤35%
- Class IV if candidate for CRT (BiV)
- Ischemic CM
 - CABG/PTCA >3 months prior
 - 40 days after MI
- Non-Ischemic CM
 - NICM >3 months

Rationale for 40 Day Waiting Period

- MADIT-II excluded patients within 1 month of MI
- Negative clinical data (DINAMIT)
- EF may improve in first few months post-MI
- Patients may die of CHF, PEA or reinfarction in the early post-MI period
DINAMIT

- Randomized patients immediate (6-40 days) post-MI to ICD or not
- EF≤35%
- Impaired autonomic function (Heart Rate Variability)
- 674 patients
- Endpoint —> Total Mortality

DINAMIT Trial

Hohnloser, et al. DINAMIT Trial NEJM 2004
Why was DINAMIT Negative?

- Decreased HRV early post MI may be a marker of increased non-arrhythmic mortality
- Possible adverse effects of anesthesia, VF and pain on early mechanical and vascular remodeling
- Too small to detect differences in first few months
VALIANT: SCD Post MI

Solomon, et al. VALIANT STUDY NEJM 2005

SCD Post MI Community Study

Abadag, et al. JAMA 2008
The ICD Conundrum

- MULTIPLE trials show benefit of ICD
- “Hole” in therapy for high SCD rate early post-MI
 - Data does not support early ICD implant
 - Some patients will improve EF
 - Some patients will die regardless of ICD implant

Incidence of SCD in Specific Populations

- General population
- Patients with high coronary-risk profile
- Patients with recent coronary event
 - Patients with EF < 35%, congestive heart failure
 - Patients with previous out-of-hospital cardiac arrest
 - Patients with previous MI, low EF and VT

VEST Trial Aims

- To determine whether a wearable defibrillator can decrease sudden death mortality without increasing non-sudden death mortality in the first 3 mo after MI, prior to the time ICD is indicated
- PI: Jeffrey Olgin, M.D. (UCSF)
- Co-PI: Byron Lee, M.D. (UCSF)

VEST Trial: Rationale

- High sudden death mortality in first 2-3 months post MI
- DINAMIT (and IRIS) negative
 - Adverse effects of ICD implant in early post MI (anesthesia, VF induction, surgery)
 - HRV or high HR may predict overall mortality but not arrhythmic mortality
- Wearable defibrillator is less expensive and less invasive
 - May be acceptable in setting of high overall mortality
 - Bridge those patients that will make it to 2 months for ICD implant
VEST: Design

- Randomized clinical trial—2:1 to Vest
- **Population:** Patients admitted with an MI & EF ≤35% (PCI ok)
- Vest monitors rhythm and compliance
 - Weekly transmissions from home via modem
- **Primary Outcome:** 3 month Sudden Death Mortality
- **Secondary Outcomes:** Non-sudden death mortality, total mortality, CV deaths, ventricular arrhythmias, nonfatal CV outcomes, QOL, compliance

VEST Trial

- **Risk Strat Testing:**
 - 60 DAYS post MI EF ≤35%
 - ENROLL→RANDOMIZE (2:1)
 - VEST
 - NO VEST
 - 90 DAYS HOSPITAL DISCHARGE
 - VEST End
 - ICD (EF ≤35%) or Reveal DX/XT (EF >35%)
 - 3-8 year follow-up (Cardlink)
- **PREDICTS**

YEARLY (for 2 years)
Wearable Defibrillator Limitations

- No pacing function
 - Asystole post VT/VF shock cannot be treated
 - No ATP for VT

- Patient compliance and complaints
 - Efficacy obviously dependent on total wear time
 - Typical compliance: 20-22 hours/day
 - Rash incidence: 6%
 - Overall pt withdrawal ~20% due to weight, rash
 - Chest circumference < 57 in
Take Home Points

- Survival from OOH SCA remains poor
- Early defibrillation is consistently associated with greater likelihood of survival
- AED use effective in EMS setting and selected deployment in public spaces, equivocal for police
- Home AED use not cost effective nor better than CPR alone
- Clear ICD mortality benefit in selected high risk populations, but “hole” in therapy for immediate post-MI pts with high SCD rate
- VEST trial results in 3 years will address this “hole”
- Defibrillator vest compliance may be a major limitation for trial results