Treating CNS HIV Infection and Disease

Why, How and When?

Richard W. Price, M.D.
Department of Neurology, UCSF/SFGH

Preface: Reasons for Renewed Interest in Treatment of CNS HIV

- Continued CNS infection/disease in treated patients
- Limited CNS access and efficacy of individual drugs and combinations
- Potential additive/synergistic HIV neuropathogenic effects combined with
 - Prolonged survival
 - Brain aging
- Potential impediment to eradication
- CNS drug toxicity

Outline: Treatment of CNS HIV

- Why? Background
 - Untreated CNS HIV infection and disease
 - Effects of ART on CNS infection and disease
 - Continued neurological impairment
- How? Drug properties and uses
 - CNS drug access and effectiveness
- When? Practical clinical application
 - Evaluation approaches
 - Untreated patients
 - Treated patients

Untreated CNS/CSF Infection

- CNS/CSF infection is a nearly ubiquitous facet of systemic infection
 - Early entry of CNS during primary infection
 - Continues through course of untreated infection
 - Dynamically linked to systemic viremia
- Evolution of CSF infection types
 - Early, meningitic: Non-compartmentalized (transitory, CD4High)
 - Late, encephalitic: Compartmentalized (autonomous)
 - T-tropic (CD4High)
 - M-tropic (CD4Low)
- Driver of local immune activation and neural injury
Plasma & CSF HIV RNA & CSF WBCs in Untreated Subjects across the Spectrum of CD4

113 Untreated HIV+ (8 ADC)
- CSF HIV detection common across CD4 range
- Variable relationship of CSF to plasma VL
- CSF pleocytosis common across CD4 range
- ADC findings cluster with non-ADC

Neuro-Asymptomatic: Non-compartmentalized T-tropic

- Neurosymptomatic subjects
- Genetic mixing of CSF and plasma populations
- Minor CSF isolation

ADC: Compartmentalized, M-tropic

- ADC patients
- Strong CSF compartmentalization
- Independent evolution-amplification of CSF HIV

Unchecked HIV Encephalitis and ADC (HAD)

- Pathological substrate
 - HIV encephalitis (HIVE)
 - Multinucleated giant cell encephalitis
 - White matter pallor
 - Micro-neuronal abnormalities
 - Vacuolar myelopathy
- Cell site of HIV replication
- Compartmentalized
- Pathways to brain injury
 - Viral gene products: signal and toxic
 - Cell (MΦ) gene products: endogenous toxins
 - Glutamate receptor ligands
Effect of cART on CNS HIV Infection

• Common viral suppression
• Uncommon CNS escape
 • Symptomatic
 • Asymptomatic
• Residual replication?
 • Level of CSF HIV in well-treated patients
 • Continued CNS injury?

CSF HIV Responses to Treatment: Older Experience

- Offs – 67 off ART for >3 months
- Failures – 48 on ART, plasma VL > 50 cpm
- Successes – 33 on ART, plasma VL < 50

CSF HIV Responses to Treatment: Older Experience

A. Off Treatment
B. ‘Failed’ Treatment
C. ‘Successful’ Treatment

- Systemic ‘success’ usually associated with CSF suppression
- In ‘failed’ treatment, CSF HIV RNA relatively lower than plasma
- CSF HIV assumes different relation to plasma HIV
- Hence, treatment usually favorably impacts CSF HIV infection

Exceptions to Successful CNS Treatment: CSF Escape

 - CSF escape (or dissociation) clearly indicative of active CNS disease
 - CSF escape of uncertain pathogenetic significance

Symptomatic CSF Escape: Canestri et al

• Retrospective case series patients with neurological symptoms and HIV in CSF with suppressed plasma
 - CSF > 200 cpm, plasma < 50 cpm or CSF > 10s plasma in treated patients
 - 2 centers, 6000 patients/year
 - Review over 5 year period
• 11 patients
 - Acute or subacute neurological disease
 - 10/11 CSF pleocytosis
 - Median CSF HIV 880 cpm (588 – 12,885)
 - Resistance mutations in 7/8
 - All improved after optimization of treatment with respect to:
 • Resistance
 • CPE

Symptomatic CSF Escape

- Presented with predominantly 'myelopathic' ADC, in March 2000
- Plasma VL 378 & CSF 5,467
- On ddI/SGC/RTV - switched to ABC/NVP/IDV/RTV

Symptomatic Viral 'Dissociation' in Treated Patient

- Presented with predominantly 'myelopathic' ADC, in March 2000
- Plasma VL 378 & CSF 5,467
- On ddI/SGC/RTV - switched to ABC/NVP/IDV/RTV

Asymptomatic CSF Escape: Eden et al

- Retroactive case series of patients on contemporary therapies with:
 - HIV in CSF (>50 cpm) with suppressed (<50 cpm) plasma
 - 69 total subjects
 - 7 with detectable CSF (10%)
 - Median CSF HIV 121 cpm (54 – 213)
 - CSF pleocytosis: no different from non-escape
 - Resistance mutations not done
 - No relation to cpe score

Asymptomatic CSF Escape with Contemporary Therapy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CN-escape</th>
<th>CN non-escape</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>median (range)</td>
<td>56 (36-64)</td>
<td>41 (22-71)</td>
</tr>
<tr>
<td>Sex, male/female</td>
<td>42 (73%)</td>
<td>45 (73%)</td>
<td>n.s.</td>
</tr>
<tr>
<td>CSF and blood, HIV RNA (CD4+ T cells)</td>
<td>median (CPM)</td>
<td>230 (490-822)</td>
<td>525 (350-642)</td>
</tr>
<tr>
<td>CSF load: HIV RNA (logs)</td>
<td>median (logs)</td>
<td>1.09 (1.06-1.74)</td>
<td>1.09 (1.06-1.74)</td>
</tr>
<tr>
<td>CSF cell count</td>
<td>median (103)</td>
<td>1.4 (1-8.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>CSF cell type</td>
<td>median (103)</td>
<td>1.4 (1-10.4)</td>
<td>n.s.</td>
</tr>
<tr>
<td>CSF HIV-1 viral load (103)</td>
<td>median (103)</td>
<td>7.3 (4-7.9)</td>
<td>7.4 (4.8-9.1)</td>
</tr>
<tr>
<td>CD4 count (103)</td>
<td>median (103)</td>
<td>7.3 (1.5-8.1)</td>
<td>7.1 (4.8-9.1)</td>
</tr>
<tr>
<td>WBC, c/µL</td>
<td>median (103)</td>
<td>4.1 (1-6.4)</td>
<td>1.9 (1.3-8.6)</td>
</tr>
<tr>
<td>Platelet count, c/µL</td>
<td>median (103)</td>
<td>174 (52-392)</td>
<td>214 (127-542)</td>
</tr>
</tbody>
</table>
Antiretroviral Drugs of CSF Viral Escape Subjects

<table>
<thead>
<tr>
<th>Drug</th>
<th>CSF viral escape, no. (%)</th>
<th>Total, no. of subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elv</td>
<td>4 (15)</td>
<td>27</td>
</tr>
<tr>
<td>Lpvh</td>
<td>1 (3)</td>
<td>21</td>
</tr>
<tr>
<td>AtvE</td>
<td>2 (10)</td>
<td>21</td>
</tr>
<tr>
<td>Tat</td>
<td>3 (9)</td>
<td>34</td>
</tr>
<tr>
<td>Abc</td>
<td>4 (22)</td>
<td>18</td>
</tr>
<tr>
<td>Zidv</td>
<td>0 (0)</td>
<td>17</td>
</tr>
<tr>
<td>3TC</td>
<td>4 (10)</td>
<td>43</td>
</tr>
<tr>
<td>FTC</td>
<td>3 (12)</td>
<td>26</td>
</tr>
</tbody>
</table>

NOTE: STC, lamivudine; Abc, abacavir; Atv, atazanavir; Elv, efavirenz; FTC, emtricitabine; Lpvh, lopinavir/ritonavir; Tat, tenofovir; Zid, zidovudine.

A Case of CSF Escape: Confounded Symptoms

- Day 2053: Genotyping - K65R, no NNRT or PI resistance
- From CPE2010 of 13 to 7

Very Low Residual CSF HIV RNA in Suppressed Subjects in Intensification Study

HIV-Related CNS Disease: Nomenclature

- Early: clinical phenotypic diagnosis & classification by functional criteria
 - ADC (MSK) staging
- Present: 'Frascati' diagnosis & classification based on neuropsychological testing impairment: HAND (HIV-associated neurocognitive disorders)
 - HAD: HIV-associated dementia (2 domains >2SD below mean)
 - NMD: mild neurocognitive disorder (2 domains >1SD below mean and symptoms or functional impairment)
 - ANI: asymptomatic neurocognitive impairment (2 domains >1SD below mean without symptoms)
Impact of Treatment on Severe CNS Disease over 3 Epochs in a Danish Nationwide Cohort

- Study design:
 - Nationwide, population-based cohort study using Danish registries
 - Severe neurocognitive disorders (SNCD)
 - Incidence of and survival after SNCD in HIV-infected patients, compared with a general population control cohort

- Findings:
 - 32 cases per 4,452 HIV+
 - 120 cases per 62,328 controls
 - Relative risk 10.1 when CD4 <350 (optimal CD4 >500)
 - Relative incidence in HIV+ approached HIV- in 2005-2008
 - Mortality higher in HIV+ SNCD

Continued CNS Disease in Treated: Prevalence of Neuropsychological Impairment

- Study of 200 subjects with treatment-induced plasma viral suppression
 - 27% Cognitive complaints
 - 50 with neurological complaints (64% impairment)
 - 24% asymptomatic neurocognitive impairment (ANI)
 - 52% mild neurocognitive disorder (MND)
 - 8% HAD
 - 50 without neurological complaints (64% impairment)
 - 60% ANI
 - 5% HAD

Targeting the CNS: Drug Access and Effect

- Evaluating systemic therapy
- Evaluating CNS drug effects
- Comparing systemic and CNS effects

Hierarchy of Drug Properties in Treating Systemic HIV Infection

- Systemic anti-HIV potency/efficacy
- Low toxicity and side effect profile
- Favorable drug-drug interactions
- Convenient dose schedule (favoring adherence)
- CNS treatment effectiveness
- Low cost

Local Treatment of CNS Infection: Drug CNS ‘Penetration’ and Effectiveness

- CNS PK
 - CSF commonly used as brain PK surrogate
- CNS PD
 - Very limited data on most drugs
- Practical guide
 - CNS Penetration Effectiveness (CPE) Scoring (Letendre and colleagues)
 - 2008
 - 2010

CNS Penetration Effectiveness (CPE) 1:
Original 2008, Modified 2010

<table>
<thead>
<tr>
<th>NRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>Enfuvirtide</td>
<td>Didanosine</td>
<td></td>
</tr>
<tr>
<td>Zidovudine</td>
<td>Lamivudine</td>
<td>Stavudine</td>
<td></td>
</tr>
<tr>
<td>Nevirapine</td>
<td></td>
<td>Zalcitabine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delavirdine</td>
<td>Nevirapine</td>
<td>Efavirenz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir</td>
<td>Saquinavir</td>
<td>Indinavir</td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaletra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrase Inhibitors

<table>
<thead>
<tr>
<th>RTV Inhibitors</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraviroc</td>
<td>Raltegravir</td>
<td>Elvitegravir</td>
<td></td>
</tr>
</tbody>
</table>

CNS Penetration Effectiveness (CPE) 2:
Original 2008, Modified 2010

<table>
<thead>
<tr>
<th>NRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>Enfuvirtide</td>
<td>Didanosine</td>
<td></td>
</tr>
<tr>
<td>Zidovudine</td>
<td>Lamivudine</td>
<td>Stavudine</td>
<td></td>
</tr>
<tr>
<td>Nevirapine</td>
<td></td>
<td>Zalcitabine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delavirdine</td>
<td>Nevirapine</td>
<td>Efavirenz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir</td>
<td>Saquinavir</td>
<td>Indinavir</td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaletra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrase Inhibitors

<table>
<thead>
<tr>
<th>RTV Inhibitors</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraviroc</td>
<td>Raltegravir</td>
<td>Elvitegravir</td>
<td></td>
</tr>
</tbody>
</table>

CNS Penetration Effectiveness (CPE) 3:
Original 2008, Modified 2010

<table>
<thead>
<tr>
<th>NRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir</td>
<td>Enfuvirtide</td>
<td>Didanosine</td>
<td></td>
</tr>
<tr>
<td>Zidovudine</td>
<td>Lamivudine</td>
<td>Stavudine</td>
<td></td>
</tr>
<tr>
<td>Nevirapine</td>
<td></td>
<td>Zalcitabine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNRTIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delavirdine</td>
<td>Nevirapine</td>
<td>Efavirenz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIs</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir</td>
<td>Saquinavir</td>
<td>Indinavir</td>
<td></td>
</tr>
<tr>
<td>Ritonavir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaletra</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrase Inhibitors

<table>
<thead>
<tr>
<th>RTV Inhibitors</th>
<th>1</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraviroc</td>
<td>Raltegravir</td>
<td>Elvitegravir</td>
<td></td>
</tr>
</tbody>
</table>
CNS Penetration Effectiveness (CPE) 2: 2010

<table>
<thead>
<tr>
<th>NRTIs</th>
<th>Abacavir</th>
<th>Lamivudine</th>
<th>Tenofovir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNRTIs</th>
<th>Nevirapine</th>
<th>Darunavir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIs</th>
<th>Darunavir</th>
<th>Atazanavir</th>
<th>Nelfinavir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry inhibitors</th>
<th>Maraviroc</th>
<th>Enfuvirtide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrase inhibitors</th>
<th>Raltegravir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Initial Systemic Treatment Preferences & CNS Effects: Conflicting Priorities

Conflict between systemic and CNS treatment optimization!

Why Do Common Regimens Work So Well?

- **Systemic Effects**
 - Reduce CNS viral reseeding
 - Reduce immune activation
 - Reduce traffic of activated target cells
 - Enhance immune control?

- **CNS Effects**
 - Underestimated by CPE score
 - CSF is not equivalent to brain
 - Intracellular concentrations and effects paramount for most
 - Older regimens more effective?
Evaluating Patients for CNS Treatment: Clinical

- **Screen**
 - Bedside screen
 - Quantitative screen
- **Evaluation**
 - Neurological consultation
 - Formal quantitative (neuropsychological) testing

Evaluating Patients for CNS Treatment: Laboratory

- **Neuroimaging (MRI)**
 - Alternative diagnoses
 - HIV-effects
- **CSF examination**
 - Alternative diagnoses
 - HIV infection
 - HIV RNA
 - Drug susceptibility
 - Inflammation
 - Neural injury

Off-Treatment Algorithm

```
Off Therapy
/\                         /
|                           |
Bedside Screening          QNP Screening
/\                         /
|                           |
Normal CNS Function         Standard ART
/\                         /
| yes                       |
| usually                  |
| consider                 |
| Severe CNS Dysfunction    |
| Ahl Do?                  |
| no                       |
| More Neuro-Effective ART |
```

On-Treatment Algorithm

```
On Therapy
/\                         /
|                           |
Bedside Screening          QNP Screening
/\                         /
|                           |
Normal CNS Function         Continue Standard ART
/\                         /
| yes                       |
| reset                    |
| Progressive              |
| Severe CNS Dysfunction    |
| Ahl Do?                  |
| no                       |
| CSF Escape               |
| yes                      |
| More Neuro-Effective ART |
```
Steps in Approach to HIV-Related Neurological Disease

1. Suspect Clinically
2. Diagnose Biologically
3. Treat Virologically

CNS Brain Infection and Disease: Some Conclusions

- cART has been very effective in reducing severe HIV-related brain injury
- But CNS impairment continues
 - May reflect past injury
 - Supported by relation to CD4 nadir
 - Should decrease with earlier treatment initiation
 - Frequency/intensity of ongoing (active) injury uncertain
 - Exceptions are cases with symptomatic CSF escape
 - Significance of asymptomatic CSF HIV or immune activation uncertain
- Targeting CNS infection and disease remains to be refined with respect to:
 - Settings
 - Choices of treatment

Acknowledgements

- Clinical/CSF
 - Magnus Gisslen
 - Lars Hagberg
 - Arvid Eden
 - Aylin Yilmaz
 - Serena Spudich
 - Paola Cinque
 - Evelyn Lee
 - Julia Peterson

- Immunology
 - Dietmar Fuchs
 - Elizabeth Sinclair

- Neural Biomarkers
 - Henrik Zetterberg
 - Ulf Andreasson
 - Jan Krut
 - Lars Rosengren

- Virology
 - Teri Liegler
 - Gretja Schnell
 - Ron Swanstrom
 - Sarah Palmer
 - Victor Dahl

RWP Potential Conflicts: Investigator-initiated research grant Merck & Co; Honorarium Abbott