Protecting The Kidneys From Contrast
“To CIN or not to CIN”

Diane M. Birnbaumer, M.D., FACEP
Professor of Clinical Medicine
David Geffen School of Medicine at UCLA
Senior Physician
Department of Emergency Medicine
Harbor-UCLA Medical Center
The Issues

- What IS contrast-induced nephropathy?
 - How do we measure it?
 - Change in serum creatinine? Decrease in GFR? Other measure?

- Who is at risk?

- What can we do to minimize the risk?

- How do we follow up these patients?
Problems with the Literature

- Few studies address emergent imaging
 - Most studies are in outpatients undergoing elective procedures, particularly cardiac angiography
- Inclusion criteria vary between studies
- Definition of acute kidney injury varies between studies
- Variable doses and regimens of interventions used
Risk Factors for CI N

- Not modifiable
 - Chronic kidney disease*
 - Shock/hypotension
 - Diabetes
 - Age ≥ 70 years
 - Congestive heart failure

- Modifiable
 - Type of imaging procedure performed
 - Type of contrast used**
 - Dose of contrast used**
 - Hydration status
 - Concomitant nephrotoxic agents
 - Recent contrast administration

** Most important risk factor
So, Which Patients Do We Worry About?

- First, need to assess renal function
- What should we use…
 - Serum creatinine?
 - Glomerular filtration rate?
 - Creatinine clearance?
 - eGFR?
 - Something else?
Is the Serum Creatinine a Good Measure of Renal Function?

 - N = 765, needing CT scans
 - 14% CrCl < 60 ml/min; 40% had serum Cr < 1.5
 - Using CrCl of ≥ 60 ml/min as adequate renal function, looked at correlation of serum creatinine

<table>
<thead>
<tr>
<th>sCr</th>
<th>Sensitivity for eGFR < 60</th>
<th>Specificity for eGFR < 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 mg/dl</td>
<td>45%</td>
<td>99.9%</td>
</tr>
<tr>
<td>1.5 mg/dl</td>
<td>60%</td>
<td>98%</td>
</tr>
<tr>
<td>1.2 mg/dl</td>
<td>81%</td>
<td>88%</td>
</tr>
<tr>
<td>1.0 mg/dl</td>
<td>91%</td>
<td>70%</td>
</tr>
</tbody>
</table>
The Cr is > 1.5 and/or the eGFR is < 60…

Now What?

- Minimize the risk
 - Consider using alternative imaging methods (e.g. ultrasound, MRI or a noncontrast CT a viable alternative?)
 - If CT with contrast unavoidable
 - Use low or iso-osmolar nonionic contrast agents
 - Consider using lower doses of contrast
 - Avoid NSAIDs or other nephrotoxic drugs
 - Assure adequate hydration
What About Giving Fluids?

- Adequate hydration most important factor in preventing CI N
- How should the fluids be given?
 - Oral or IV?
- What fluids should we use?
 - 0.5 NS? NS? Isotonic sodium bicarbonate?
Normal Saline or 0.5 Normal?

- Studies addressing this typically include all patients (normal and decreased renal function)
- Overall data shows normal saline more beneficial
- Most benefit seen in diabetics and those receiving high (> 250 ml) doses of contrast
- Benefit decreases in those with more chronic renal dysfunction
IV Bicarbonate?

- Hogan SE, Am Heart J 2008
 - Meta-analysis of 7 RCT; N = 1,307 patients
 - Moderate heterogeneity between studies
 - Compared prehydration with NS vs. sodium bicarbonate
 - Relative risk of CN 0.37 in bicarbonate group
 - No statistically significant impact on...
 - Need for hemodialysis
 - Mortality
Fluids: Bottom Line

- IV more effective than oral
- Normal saline better than 0.5 normal saline
- Isotonic sodium bicarbonate probably best
 - No real downside; may be some benefit
- After procedure, goal is urine output of 150 ml / hour for 6-12 hours
- Diuretics and mannitol NOT effective in preventing CI N - do not use
IV Fluids: Bottom Line

- Isotonic saline
 - Start at 1 ml/kg/hr at least 2 and preferably 6-12 hours before; continue 6-12 hours after contrast
IV Fluids: Bottom Line

- Isotonic bicarbonate
 - 3 amps bicarbonate in 850 ml sterile water (equals 150 mEq sodium/liter)
 - 1.5 amps bicarbonate in one liter 0.5 NS (equals 152 mEq sodium/liter)
- Risk of error in preparation a concern
- Bolus 3 mL/kg for one hour before; continue at rate of 1mL/kg/hr for 6 hours after procedure
N-acetylcysteine

- Issues with the studies
 - Most used oral preparation a day or two in advance of contrast – not applicable to ED
 - Doses varied / patients included varied
 - Most well known study is the ACT trial
 - Acetylcysteine for the prevention of Contrast-induced Nephropathy
Oral N-acetylcysteine

- ACT Trial
 - N = 2,308 patients undergoing angiography
 - “High risk” patients – at least one of: Age > 70 years, chronic kidney disease, diabetes mellitus, CHF or LVEF < 45%, or shock
 - Received either 1200 mg NAC twice daily or placebo on the day before and after angiography
 - AKI defined as ≥ 25% increase in serum Cr 48-96 hours after angiography
 - Found no difference: 12.7% in both groups
Oral N-acetylcysteine

- Criticisms of the ACT Trial
 - Only 367 patients had a serum Cr ≥ 1.5 mg/dL
 - Majority of patients had only mild CKD (GFR 45-60 mL/min/1.73m2) – how much risk of AKI in these patients?
 - Study may have been underpowered to exclude benefit in highest risk patients
 - Baseline Cr within 3 months of procedure – not right before
 - High osmolal contrast used in 20%
IV N-acetylcysteine

Issues with the studies

Okay, so what about the use of NAC in “emergent” cases?

A few studies looked at IV NAC

Doses and administration varied
IV N-acetylcysteine – A “Nay”

- Webb JG; Am Heart J 2004
 - N = 487, mean baseline Cr 1.6 mg/dL
 - Isotonic saline – 200 mL before procedure, 1.5 mL/kg/hr for 6 hours after
 - IV NAC 500 mg immediately before procedure
 - No benefit
 - What might be some problems with this study?
IV N-acetylcysteine – “Aye”??

 - N = 354 AMI patients
 - Different doses of NAC (1200 mg vs. 600 mg IV, then same oral dose twice daily for two days) vs. placebo
 - AKI: Placebo = 33%, low dose = 15%, high dose = 8%
- Issues
 - Included all patients, even those with normal Cr (in whom risk is already low)
 - High rate of medical complications confounding data
Baker CS, J Am Coll Cardiol 2003

- N = 80, mean baseline Cr 1.8 mg/dL
- Compared isotonic saline (1 mL/kg/hr for 12 hours pre- and post-contrast) to IV NAC (150 mg/kg prior, then 50 mg/kg over 4 hours after)
- AKI: NAC = 5%, saline = 20%
- 7% anaphylactoid reactions
IV N-acetylcysteine: Bottom Line

- Data unclear on efficacy when used in emergency situation
- Possibly useful... high risk patients?
- Beware of possible anaphylactoid reactions
- Guidelines contradictory in recommendations
 - Up To Date: No; unproven benefit, risk of anaphylactoid reactions
 - Society for Cardiovascular Angiography: Yes, oral
Possibly Beneficial Therapies

- Prostaglandin E1
 - Hypotension
- Aminophylline / theophylline
 - Arrhythmogenic
- Ascorbic acid – jury’s out
- Statins – maybe... await more data
Not Proven Beneficial

- Angiotension II
- Fenoldopam
- Dopamine
- Calcium channel blocker
- Adenosine
- Endothelin antagonists
What About Follow Up?

- Patients at high risk should get creatinine rechecked in 48 hours
- Patients not at high risk don’t need follow up
Preventing CIN: The Bottom Line

- Identify the patients at risk
 - Cr ≥ 1.5 and/or eGFR ≤ 60 ml/1.73m²
 - Know the additional risk factors
 - Diabetes, hypotension/shock, age > 70, CHF
Preventing CIN: The Bottom Line

- Optimize the basics
 - Consider other imaging modalities (US, MRI, non-contrast CT)
 - If CT unavoidable
 - Avoid high osmolar agents
 - Use low doses of contrast
- Avoid agents toxic to the kidneys
 - NSAIDs
 - Aminoglycosides
 - Diuretics (unless necessary to manage patient)
Preventing Cl N: The Bottom Line

- Assure adequate hydration with IV fluids
 - At minimum, normal saline
 - Isotonic sodium bicarbonate may be better
- NAC not proven effective
 - But consider in high risk patients
- Insufficient data at this point to recommend statins, ascorbic acid, or other agents
Thank You For Your Attention!

Any Questions?