Low Back Pain

Michelle Lin, MD
Associate Professor of Clinical Emergency Medicine, UCSF
San Francisco General Hospital
(Michelle.Lin@emergency.ucsf.edu)

Anatomy of Thoracolumbar Spine

Vertebral body
Superior articular process
Inferior articular process
Facet: Articulating joint between superior and inferior articular process
Transverse process
Pedicle
Lamina
Spinous process

Neural (spinal) canal: Space which contains the spinal cord and cerebrospinal fluid
 • Formed by vertebral body, pedicles, laminae
 • Relative space around spinal cord is smaller at thoracic level --> neural canal impingement at thoracic level has high risk for spinal cord compression
 • The thoracic cord is thicker than lumbar cord because lumbar fibers have not yet branched off from spinal cord.

Intervertebral disk: Comprised of nucleus pulposus (inner) and annulus fibrosis (outer)
 • Annulus fibrosis ring weakest posteriorly, predisposing to disk herniations towards the spinal neural canal

Anterior and posterior longitudinal ligaments: Ligaments that stabilize the vertebral column along anterior and posterior aspects of vertebrae, respectively
 • Posterior longitudinal line forms border between vertebrae and disks from neural canal
 • Thinnest at L1-S1, corresponding with higher incidence of lumbar than thoracic disk herniations

Ligamentum flavum: Ligament anteriorly bordering the lamina
 • Commonly hypertrophies with age and may cause spinal stenosis

Spinal cord
Cauda equina: Peripheral lumbar and sacral nerve roots distal to L2 vertebral level, where conus medullaris ends

Spinal nerve root: Peripheral nerve which exits neuroforamina from either side of the vertebral body
 • Commonly compressed in disk herniation, causing radiculopathy
Differential Diagnosis of Acute Back Pain

Acute Low Back Pain (LBP):
- **Definition:** Back pain for < 6 weeks
- 70-90% have pain resolution within 6 weeks

Non-thoracolumbar pathology (aortic disease, pancreatitis, ectopic pregnancy, etc)

“Red flag” conditions (Agency for Healthcare Research and Quality guidelines, 1999)

1. **Fracture**
 - Occurs with significant blunt trauma, or with minimal trauma in the setting of age-related or corticosteroid-induced osteoporosis
 - Risk for spinal cord compression
2. **Cauda equina syndrome**
 - A neurosurgical emergency
 - Compression of multiple lumbar and sacral nerve roots in the cauda equina, causing bilateral leg symptoms, saddle anesthesia, and/or impaired bowel-bladder function
3. **Spinal infection**
 - Spinal epidural abscess and vertebral osteomyelitis (spondylitis)
4. **Vertebral malignancy**

Sub-acute conditions

1. **Spinal stenosis**
 - Impingement of the neural canal from congenital, degenerative, or hypertrophic changes
 - **Average age** = 55 years
 - Account for 3% of all LBP causes
 - **Classic symptoms:** pseudoclaudication (pain worst with walking, and better with rest AND spine flexion)
 - Spine flexion increases spinal canal diameter and relieves spinal stenosis symptoms
 - Walking uphill is less painful than walking downhill
 - Frequently misdiagnosed as vascular claudication
2. **Spondylolisthesis**
 - Slippage of one vertebral body over another
 - **Causes:** Most commonly from degenerative disease >> trauma
 - **Age** > 40 years old
 - **Asymptomatic** in up to 66% of cases ([Kauppila et al., 1998](#))
 - **Radiographic classification:** Grade 1 (0-25% slippage), Grade 2 (25-50% slippage), Grade 3 (50-75% slippage), Grade 4 (>75% slippage)
3. **Ankylosing spondylitis**
 - Decreased range of spinal flexion and range of motion
 - **Classic symptoms:** Morning back stiffness, which improves with exercise
• Xray:
 ✅ “Bamboo spine” (late stage)
 ✅ Narrowing of SI and facet joints, osteoporosis, square lumbar vertebral bodies, syndesmophytes (early signs)
• Fractures have high risk for spinal cord injury because of spine rigidity

Benign acute conditions

1. **Intervertebral disk herniation**
 • Herniation of the nucleus pulposus through the annulus fibrosis into the spinal canal, most frequently posterolaterally to compress a peripheral nerve root
 • **Age predominance:** 30-50’s
 ✅ 3rd decade: Disk starts to dessicate and degenerate— higher risk for herniation
 ✅ 6th decade: Disk shrinks—lower risk for herniation
 ✅ Beware of diagnosing patient with disk herniation in elderly population (uncommon)
 • **Symptoms:**
 ✅ Lower extremity pain severity often overshadows back pain
 ✅ Worse with sitting and Valsalva (sneezing, laughing, coughing)
 • **Thoracic Disk Herniation:**
 ✅ Accounts for <1% of all disk herniations
 ✅ Peak age incidence = 40-70 years old
 ✅ Only 10-15% have cauda equina syndrome findings
 ✅ Subtle exam findings—upper motor neuron signs (clonus, abnormal Babinski reflex) from cord compression; urinary retention; posterior column findings (change in position, touch, and temperature findings); unilateral or bilateral lower extremity weakness
 ✅ Incidence of cord compression risk is high – smallest spinal canal diameter in thoracic spine
 ✅ Often 20 months of thoracic pain elapse before thoracic disk disease diagnosed
 • **Upper Lumbar Disk Herniation (L1-L4):**
 ✅ Account for <5% of all disk herniations
 ✅ Subtle exam findings, like thoracic disk herniations
 ✅ Often positive reverse straight-leg-raise test (prone positioning with extended leg elevation reproduces pain radiating to anterior thigh)
 • **Lower Lumbar Disk Herniation (L4-L5, L5-S1):**
 ✅ Accounts for 95% of all disk herniations
 ✅ Often associated with an L5 or S1 radiculopathy (sciatica)
 • **Asymptomatic disk herniations** seen on MRJ
 ✅ No pain fibers supplying nucleus pulposus and inner annular layers
 ✅ Incidence on thoracic levels = 73% (Wood et al, 1999)
 ✅ Incidence on lumbar levels = 20-30% (Paajanen et al, 1989; Jensen et al, 1994)
• **Complications:** Massive central disk herniation can cause cord compression or cauda equina syndrome
• **Natural course of symptoms:** Self-resolution after 4-6 weeks with non-operative management usually

2. **Musculoskeletal back pain**
 • Back pain with possible radiation to buttocks (but no radiation beyond knee)
 • A diagnosis of exclusion, once more concerning causes of thoracolumbar pain ruled-out
The History

Use the history to risk-stratify a patient for “red flag” diagnoses (fracture, cauda equina syndrome, spinal infection, vertebral malignancy), unique subacute conditions (spinal stenosis, spondylolisthesis, ankylosing spondylitis), and disk herniation.

<table>
<thead>
<tr>
<th>Thoracolumbar Pathology</th>
<th>Historical Clues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herniated disk</td>
<td>Back pain radiates down the legs, past the knees</td>
</tr>
<tr>
<td>Spinal stenosis</td>
<td>Pain worse with walking and better with bending forward</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>Morning back stiffness which improves with exercise</td>
</tr>
<tr>
<td>Fracture</td>
<td>History of blunt trauma</td>
</tr>
<tr>
<td></td>
<td>Risk: age > 50 yrs old, chronic steroid use</td>
</tr>
<tr>
<td>Spinal infection</td>
<td>FEVERS, CHILLS</td>
</tr>
<tr>
<td></td>
<td>Back pain persistent at rest</td>
</tr>
<tr>
<td></td>
<td>Back pain worse at night</td>
</tr>
<tr>
<td></td>
<td>Risk: age > 50 yrs old, chronic steroid use, immunocompromised, IVDU</td>
</tr>
<tr>
<td>Vertebral malignancy</td>
<td>Persistent back pain > 6 weeks duration</td>
</tr>
<tr>
<td></td>
<td>Back pain worse at night</td>
</tr>
<tr>
<td></td>
<td>Unexplained weight loss</td>
</tr>
<tr>
<td></td>
<td>Risk: age > 50 yrs old, history of malignancy</td>
</tr>
<tr>
<td>Cauda equina syndrome</td>
<td>Bilateral leg pain, numbness, or weakness</td>
</tr>
<tr>
<td></td>
<td>Bowel or bladder changes</td>
</tr>
</tbody>
</table>

The Physical Exam

Abdomen: Palpate for pulsatile mass and tenderness

Back:
- Palpate for tenderness midline and paraspinous
- Percussion-induced back pain suggests spinal infection or malignancy

Straight-Leg Raise (SLR) Manuevers:
- Stretches sciatic nerve when elevate supine patient’s extended leg
- Radiation of pain distal to knee suggests radiculopathy
- Sensitivity = 80%, specificity = 40%
- More specific test for L5-S1 radiculopathy (sciatica) is **crossed-SLR test**, where pain radiates down affected leg when contralateral leg is raised (sensitivity 25%, specificity 90%)
- An L5-S1 radiculopathy is 95% sensitive for lumbar disk herniation (thus, the absence of radiculopathy almost rules-out a herniated disk)
- Reverse SLR: Stretches L3 and L4 nerves by elevating PRONE patient’s extended leg
 - Reproduction of pain in L3-L4 distribution with reverse SLR suggests L3-L4 radiculopathy

Neurologic:
- Sensory:
 - Light touch and pinprick testing of each nerve dermatome, and saddle distribution (inner proximal thighs and buttocks)
 - Best to perform at most distal site (foot for L4, L5, S1 – see figure below)
- Motor: Specificity of following findings for lumbar disk herniation:
 - Weakness of ankle dorsiflexion (70%)
 - Weakness of great toe extension (70%)
 - Weakness of ankle plantar flexion (95%)
 - Weakness of knee extension (99%)
- Reflexes
- Gait: Spinal stenosis patients often walk with spinal flexion (bending forward)
Rectal exam: For patients exhibiting severe back pain, bilateral leg symptoms, or bowel/bladder changes (to check for decreased tone, as found in cord compression and cauda equina syndrome)

Vascular:
- Check pedal pulses to help distinguish vascular claudication versus spinal stenosis pseudoclaudication
- A decreased pulse is worrisome for acute limb ischemia (thromboembolic disease, AAA, aortic dissection)

Waddell’s signs:
- SLR exam in seated position by extending knee, should also reproduce L5-S1 radiculopathy pain
- Hyperesthesia of skin along back suggests a non-organic etiology for back pain.
- Pain with axial loading on scalp should not elicit back pain (It may, however, elicit neck pain.)
- Over-exaggeration of pain suggests a non-organic etiology for back pain

Physical Exam

Dermatomal Findings for L3-S1 Nerve Roots

Imaging: Plain Radiograph

Plain radiographs should be obtained if concerned of one of the “red flag” diagnoses

Plain film views
- 2 views: AP and lateral
- No role for oblique views in the ED
 - 19 (2.4%) missed diagnoses out of 972 patients when no oblique films obtained
 - 13 unilateral and 5 bilateral spondylolysis; 1 congenital abnormality
 - No acute diagnoses were missed

ABC’S approach to interpreting thoracic and lumbar plain radiographs

- Alignment (check anterior vertebral line, posterior vertebral line, pedicle alignment on AP view)
- Bones (look for cortical break of vertebral body, pedicles, lamina, and spinous processes)
- Cartilage (look for equal intervertebral disk height, with gradual increase in height caudally)
- Soft tissue (look for obliteration of paraspinous stripe in thoracic xray and psoas shadow in L-S xray)
RED FLAG #1: Thoracolumbar Fracture

Statistics:
- 90% of all thoracolumbar fractures occur in T12-L4 region, because of change of spinal curvature and more mobility than thoracic spine
- Incidence of spinal cord compression if fracture in T12-L2 region = 40%
- Incidence of non-contiguous fractures = 10.5% \((\text{Vaccaro et al.}, 1992)\)
- Incidence of concurrent intra-abdominal injury = 30%

Spine biomechanics: Three-column Denis model —— >
- **Anterior Column:** anterior 2/3 vertebral body, anterior longitudinal ligament
- **Middle Column:** posterior 1/3 vertebral body, posterior longitudinal ligament
- **Posterior Column:** posterior neural arch (pedicles, laminae, facets, transverse processes, spinous process), supraspinous/ interspinous ligaments, ligamentum flavum
- Definition of a “stable” fracture ranges from having 1-2 intact columns – avoid using the word “stable” vs “unstable” and describe fractures based on anatomical location and columns

Plain Radiographs:
- **Posterior vertebral line:** On lateral view, distinguishes a wedge compression fracture from a burst fracture
- **Widened interpedicular distance:** On AP view, suggests middle column interruption
- **Obliteration of lines:** On AP view, check for an abnormal paraspinous line (T4-T11 fracture) or loss of psoas shadow (L1-L5 fracture)
- **Look for a second fracture**

Classic Fracture Patterns:
1. **Wedge fracture**
 - **Mechanism:** Spinal flexion and axial loading, yielding a compressive fracture of anterior column only
 - **In people > 75 years old, 25% will develop an osteoporotic compression fracture**
 - **Radiograph:**
 - Described as % anterior height loss as compared to posterior vertebral body height
 - Intact posterior vertebral line (otherwise a burst fracture)
 - **Controversy:** A plain film poorly differentiates a wedge fracture from a burst fracture.
 - 14-22% of burst fractures appear as wedge fractures on x-ray (Ballock et al., 1992; Dai et al., 2004)
 - Thus, have a low threshold to obtain a spinal CT to confirm an intact middle column
2. **Burst fracture**
 - **Mechanism:** Spinal flexion and axial loading, yielding a compressive fracture of anterior and posterior vertebral body (compromised anterior and middle columns)
 - **Incidence of neurological deficit = 65%**
 - Final location of posterior vertebral body fragments does not correlate with spinal cord injury severity (Wilson et al., 2003)
3. **Chance fracture (“Seatbelt fracture”)**
 - **Mechanism:** Distraction injury, yielding fractures through posterior —> middle —> anterior columns
 - Classically from lapbelt injury in MVC’s
 - Usually see horizontal fracture through spinous process/ lamina and vertebral body
 - **Incidence of concurrent intra-abdominal injury** as high as 50% (pancreas, duodenum, mesentery)
 - **Location:** Typically in T12-L2 region
4. **Transverse process fracture**
 - Comprises 15% of all thoracolumbar fractures
 - **Incidence of concurrent intra-abdominal injury = 21%**
 - **Incidence of concurrent pelvic fractures = 29%** (especially with L5 transverse process fracture)
• Pearl: L2 transverse process fracture has a high association with renal artery thrombosis

Teaching points on thoracolumbar fracture

1. Have a low threshold to obtain spine CT to differentiate wedge from burst fracture.
2. Consider obtaining an abdominal-pelvis CT because of the 30% incidence of a concurrent intra-abdominal injury.
3. Be wary of transverse process fractures. Although they are clinically insignificant, they are a marker for more significant pathology (another fracture, intra-abdominal injury, renal artery thrombosis).

RED FLAG #2: Cauda Equina Syndrome

A neurosurgical emergency from compression of multiple lumbar and sacral nerve roots in the cauda equina

Etiology: Massive central disk herniation >> epidural abscess, hematoma, trauma, malignancy, spinal surgery

Importance of Timely Diagnosis:

- Equivocal literature, but likely greater chance of irreversible neurological damage if surgery occurs >48 hours after onset of symptoms. (Ahn et al, 2000; Shapiro, 2000)

Presentation: (Deyo et al, 1992)

- 30% present acutely, but 70% present subacutely within days-weeks
- Severe back pain
- Bilateral lower extremity pain, radiculopathy, and diminished lower extremity reflexes
- Saddle anesthesia (sensitivity 75%)
- Decreased rectal tone (sensitivity 60-80%)
- **Urinary retention**
 - Most consistent exam finding with sensitivity 90%, using post-void residual>100-200 cc
 - Rough bladder volume calculation using ultrasound:
 \[\text{Volume (mL)} = 0.52 \times \text{height} \times \text{width} \times \text{depth}. \text{Measurements in cm.} \]
 - Patients often do not notice urinary retention, but remark on urinary incontinence (from overflow)

Plain radiographs: Normal

Teaching point on cauda equina syndrome

The most consistent sphincter-control problem is urinary retention (sensitivity 90%)

RED FLAG #3: Spinal Infection (Spinal Epidural Abscess and Spondylitis)

Classic triad of findings: Back pain, fever, and neurologic deficits

Spinal epidural abscess (SEA):

- Mortality has high as 23%
- Early detection translates to preservation of neurologic function and improved mortality
- **Classic triad:** Back pain, fever, and neurological deficits found in only 13% patients (Davis et al, 2004)
- **Difficult to diagnose:**
 - 75-89% have delayed diagnosis, defined as multiple ED visits prior, admission without a diagnosis of SEA, or >24 hrs to definitive study (Davis et al, 2004; Tang et al, 2002)
- **Risk factors:** IV drug use, diabetes mellitus, trauma, alcoholism, immunocompromised status (HIV, chronic renal failure, chronic corticosteroid use), elderly, recent back trauma (includes iatrogenic epidural anesthesia needle puncture), indwelling catheter, recent bacterial infection
Lin: Low Back Pain (8)

- **Reihaus et al, 2000:** A meta-analysis review of 915 SEA patients showed that 3-20% of patients have zero risk factors
- **Davis et al, 2004:** Need to obtain 49 negative MRI’s to pick up one positive MRI for patients with at least one risk factor PLUS back pain

Exam:
- Fever in only 50-67% of patients
- Neurologic exam can range from normal (grade 1), radiculopathy (grade 2), sensory or motor deficit (grade 3), or paralysis (grade 4)

Laboratory tests:
- Average serum WBC = 12-16K
- Average ESR = 77-87 mm/hr
- Sensitivity of ESR >30 is 81% (Sidman et al, 2002)
- Sensitivity of ESR >20 is 98% (Davis et al, 2004)
- Sensitivity of ESR >20 is 100% if have at least 1 risk factor for SEA (Davis et al, 2011)
- ESR is more sensitive and specific than serum WBC result or CRP
- Poor prognostic indicators: Thrombocytopenia<100K, ESR>110, abscess in cervical spine (Tang et al, 2002)
- Blood cultures: Organism is *Staphylococcus aureus* (90%) >> streptococcus, enteric gram-negative bacilli

Diagnostic guideline algorithm for SEA:
(Davis et al, 2011):

- Spine pain?
 - NO: Workup and treat as appropriate
 - YES: Progressive neurological deficits?
 - NO: Fever, risk factor, static neuro deficits, or radicular pain?
 - NO: Other etiology for symptoms?
 - NO: Discharge with followup
 - YES: Workup and treat as appropriate
 - YES: ESR and CRP
 - YES: Urgent or emergent MRI
 - YES: ESR >20, or CRP >1.0

Plain radiograph:
- Only 25% do have associated spondylitis— otherwise normal films

MRI: Definitive diagnostic imaging

Spondylitis (vertebral osteomyelitis):
- Starts as diskitis, then spreads by direct extension into vertebral endplates
- Similar risk factors as spinal epidural abscess
- **Exam:** Sensitivity of fever is only 27-50%
- **Plain radiograph:**
 - May appear normal for the first 2-3 weeks of osteomyelitis
 - Classic appearance: First, narrowing and obliteration of disk space followed by irregular vertebral endplates erosion by direct extension
- **MRI:** Definitive diagnostic imaging, obtained emergently only in setting of neurological deficit
Patient case:
History: 68 y/o healthy man c/o subacute back pain for 2 months. No history of trauma, fevers, or prior back pain. Has a 20-lb weight loss in 2 months.
Physical: Vital signs and exam are normal except moderate paraspinous and midline lumbar tenderness.
Laboratory: ESR 90, serum WBC 8, UA normal
Xray: Normal lumbar spine except for mild osteoarthritis

Question #1: Is an MRI indicated? If so, as an outpatient or in the ED?
Question #2: Would your decision change if this patient had a known history of prostate cancer?
Question #3: Would your decision change if this patient had prostate cancer AND a radiculopathy?

Etiology:
- Metastatic disease 25x more likely than primary malignancy (eg. multiple myeloma)
- 60-70% of all vertebral metastases occur in the thoracic spine
- Most common metastatic malignancy: Prostate, Breast, Kidney, Thyroid, Lung, Lymphoma (“Lead kettle” mnemonic = PB KTLL)
 ✓ Important to perform prostate, breast, and lung exam
Classic symptoms: Pain worse at night and at rest
Risk factors for vertebral malignancy: (Deyo and Diehl, 1998)
- Known cancer (98% specificity)
- Unexplained weight loss (94% specificity)
- Persistent pain despite bed rest (90% specificity)
- Pain for >1 month (specificity 81%)

Plain radiograph:
- Classic findings: Blastic or lytic lesions in vertebral body or pedicle (“winking owl” sign), sparing the intervertebral disk
- Note: Vertebral osteomyelitis involves vertebral body AND disk space
- Note: Radiographic evidence of bony erosion requires >50% of vertebral bone loss. There is a false negative rate of 10-17% in detection of vertebral bony metastasis.

Laboratory:
- The ESR can help risk-stratify a patient with concerning risk factors for a malignancy, especially if very high (>100 mm/hr)

MRI:
- The ideal imaging modality to assess spinal canal and spinal cord integrity
- Expediency of ordering MRI based on risk of spinal cord compression

Pearl: In patients with known cancer and a radiculopathy, an emergent MRI is necessary. (Byrne, 1992)
- Incidence of spinal cord compression = 25% (despite normal plain films)
- Incidence of spinal cord compression = 88% (if plain films should evidence of vertebral metastasis)
Take-Home Points

- The great majority of patients with back pain do not require any imaging—only supportive pain management.
- Understand the subtleties in the history, physical, and diagnostic testing for can-not-miss “red flag” diagnoses:
 - Fracture
 - Cauda Equina Syndrome
 - Spinal Infection
 - Vertebral Malignancy
- Avoid common pitfalls of under-appreciating a patient’s potential to have a “red flag” diagnosis or complication

References

