PROBLEMS of the NEONATAL PERIOD

Whirlwind Tour of Common Neonatal Problems

- Respiratory conditions
- Infections
- Hypoglycemia
- Bilirubin metabolism: neonatal jaundice
- Bowel obstruction
- Birth injuries
- Rashes

Respiratory distress in the neonate

- Pulmonary causes:
 - Respiratory Distress Syndrome: surfactant deficiency
 - Transient Tachypnea of the Newborn: retained fetal lung fluid
 - Meconium aspiration syndrome
 - Sepsis
 - Congenital pneumonia
 - Persistent pulmonary hypertension
 - Space-occupying lesions: pneumothorax, chylothorax, pleural effusion, congenital diaphragmatic hernia

Respiratory distress syndrome (RDS)

- Surfactant insufficiency and pulmonary immaturity

- Incidence correlates with degree of immaturity
 - 33% in infants between 28-34 wks
 - <5% in infants > 34 wks

- Incidence increased:
 - male infants
 - infants of diabetic mom (6-fold ↑)
 - multiple births, second-born twin
Respiratory distress syndrome

- Clinically:
 - respiratory distress, rales, hypoxemia, poor air entry
- Radiographically:
 - hypoexpanded lungs
 - reticulogranular opacification
 - air bronchograms
 - white-out lungs

Strategies for prevention of RDS

- Prevent premature delivery
 - Tocolytics, antibiotics
- Decrease antenatal inflammation/infection
 - Chorioamnionitis, maternal infections
 - increased risk for preterm labor
- Antenatal glucocorticoids
 - Effective but do not prevent all RDS or bronchopulmonary dysplasia

Benefits of antenatal corticosteroids

<table>
<thead>
<tr>
<th></th>
<th>RR</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in RDS</td>
<td>0.66</td>
<td>(0.59, 0.73)</td>
</tr>
<tr>
<td>Reduction in IVH</td>
<td>0.54</td>
<td>(0.43, 0.69)</td>
</tr>
<tr>
<td>Reduction in NEC</td>
<td>0.46</td>
<td>(0.29, 0.74)</td>
</tr>
<tr>
<td>Reduction in mortality</td>
<td>0.69</td>
<td>(0.58, 0.81)</td>
</tr>
<tr>
<td>Systemic infection</td>
<td>0.8</td>
<td>(0.65, 0.99)</td>
</tr>
</tbody>
</table>

- No increased risk to mother of death, chorioamnionitis, puerperal sepsis
- Surfactant administration effective in reducing incidence and severity of RDS

TTN (Transient Tachypnea of Newborn)

- Delayed clearance of fetal lung fluid
- Term or near-term infants
- Delivered via c-section, no labor, short labor, precipitous delivery
- Chest Xrays: lung hyperaeration, prominent pulmonary vascular markings, interstitial fluid, pleural effusion
- Transient respiratory symptoms (tachypnea >> hypoxia >> dyspnea)
- Resolves within 2 (-5) days

Cochrane Review, 2006
Transient Tachypnea of Newborn

- slightly hyperexpanded lungs
- "sunburst" hiliar streaks
- fluid in minor fissure
- Prominent pulmonary vascular markings
- → CXR normalizes in 1st 24 hrs

Meconium Aspiration Syndrome

- Incidence of meconium staining:
 - associated with fetal distress and increasing gestational age
 - 20% of all deliveries
 - 30% in infants ≥ 42 weeks
- Hypoxia, acidosis lead to fetal gasping (→ aspiration)
- Meconium Aspiration Syndrome (MAS) found in 2-20% of infants with meconium-stained fluid
- Most common cause of respiratory distress in term newborns, typically presenting in 1st few hours of life
- Disease range: mild to severe disease –
 - air leaks, pulmonary hypertension, respiratory failure, death
 - iNO, HFOV, and ECMO improve survival
 - Surfactant may be beneficial

Complications of MAS

- pneumothorax
- pneumomediastinum
Extra-pulmonary causes of respiratory distress in the neonate

- Hyperthermia, hypothermia
- Polycythemia
- Hypovolemia, shock, metabolic acidosis
- Sepsis
- Cardiac disease: cyanotic congenital heart disease, left-sided obstructive lesions (coarctation), congestive heart failure, myocardopathy, myocarditis

Perinatal Infections

- Major risk factors for early onset sepsis
 - Prematurity < 37 weeks gestation
 - Chorioamnionitis
 - Prolonged ruptured membranes > 24 hours
 - GBS positive mother
 - Male infant

Perinatal Infections

- Bacterial infections:
 - Group B Streptococcus
 - E. coli
 - Listeria monocytogenes
- Viral infections
 - Herpes simplex
 - Hepatitis B and C
- TORCH infections: Incidence is 0.5-2.5%; many infants are asymptomatic at delivery
 - Toxoplasma gondii, treponema pallidum
 - “Other”: syphilis
 - Rubella
 - Cytomegalovirus (most common)
 - Herpes

Neonatal Group B Streptococcus

Prevention of GBS neonatal sepsis

- Routine antenatal cultures at 35-36 weeks
- Treat women:
 - with positive cultures with onset of labor
 - with previously infected infants
 - with GBS UTI

Strategy misses women who deliver prematurely and women with no prenatal care
Management of neonatal infections

- Septic work-up for infection
 - CBC with differential, bands and platelet count
 - Blood culture(s)
 - +/- C-reactive Protein (good negative predictive value)
 - +/- Lumbar Puncture
 - Specific workup for viral infection

- Treatment
 - Symptomatic: ampicillin and gentamycin (or ampicillin and 2nd/3rd generation cephalosporin for bacterial meningitis). Acyclovir if concerned for herpes.
 - Length of treatment depends on clinical findings, CBC, LP, and culture results.
 - Asymptomatic infant at risk (e.g., a non-reassuring CBC): treat for 48 (-72 hrs) until bacterial cultures negative

Perinatal Hepatitis B

Prevention of transmission:
- Hepatitis B vaccine prior to hospital discharge for all infants (<12 hr if Mom HBsAg positive)
- HBIG (hepatitis B immunoglobulin) plus vaccine for infants born to HBsAg + mother @ <12 hrs of life decreases transmission from 20-90% to 5-10%
- All infants receive routine Hepatitis B vaccine during infancy (1 mo and 6 mos); check if susceptible
- Breastfeeding safe with HBsAg positive mother with vaccine plus HBIG treatment for the infant

Perinatal Hepatitis C

High-risk mothers screened during pregnancy
- Vertical transmission rate is 5-10%
- Hepatitis C antibody titers obtained on infant at 6 and 12 months, or Hepatitis C PCR at 4 mos

What about breastfeeding with Hepatitis C+ mother?
- Variable amounts of virus in milk
- Studies have not shown increase risk of transmission of Hepatitis C with breastfeeding

Perinatal TORCH Infections

- Non-specific findings in infants
 - SGA, IUGR, postnatal growth failure
 - Microcephaly, hydrocephalus, intracranial calcifications
 - Hepatosplenomegaly, hepatitis, jaundice (elevated direct component)
 - Anemia (hemolytic), thrombocytopenia
 - Skin rashes, petechiae
 - Abnormalities of long bones
 - Chorioretinitis, cataracts, glaucoma
 - Nonimmune hydrops
 - Developmental and learning disabilities
Perinatal (TORCH) Infections

Specific findings:
- **Syphilis**: osteochondritis, periosteal new bone formation, rash, snuffles
- **Cytomegalovirus**: microcephaly, periventricular calcifications, hydrocephalus, chorioretinitis, petichiae, thrombocytopenia, hearing loss (progressive)
- **Toxoplasmosis**: hydrocephalus, chorioretinitis, generalized intracranial calcifications (random distribution)
- **Rubella**: cataracts, “blueberry muffin rash”, patent ductus arteriosus, pulmonary stenosis, deafness

“Blueberry” muffin rash: cutaneous hematopoeisis

Ocular findings

Neonatal Herpes Simplex

- Neonatal Herpes simplex infections:
 - HSV-1 (15 to 20%) and HSV-2 (80 to 85%)
 - Neonatal infection
 - with *primary* HSV is 35-50%; with *recurrent* HSV is 0-5%
 - Increased risks of transmission
 - prolonged rupture of membranes
 - forceps or vacuum delivery, fetal scalp monitoring
 - preterm infants
 - 75% of cases have neither history of maternal infection nor skin lesions
 - consider treatment based on clinical presentation and suspicion of infection.
Herpes simplex: clinical presentations

- **Disseminated** (systemic) disease:
 - Early onset (1st week of life), 25% of cases
 - Sepsis syndrome, liver dysfunction, pneumonia
- **CNS disease**: meningoencephalitis
 - 2nd-3rd week of life, 35% of cases
 - Fever, irritability, abnormal CSF, seizures
 - Early treatment improves outcome, but 40-50% infants have residual neurodevelopmental disability
- **Localized disease**: skin, eyes, mouth, 40% of cases

Cutaneous HSV: clustered vesicular eruption → ulceration

Diagnosis of TORCH Infections

- CMV
 - urine culture
- Toxoplasmosis
 - maternal antibody titers and neonatal IGM antibody
- Syphilis
 - RPR or VDRL positive, obtain titers, order treponemal-specific test (FTA or MHA-TP)
- Herpes simplex
 - Surveillance: conjunctival, nasopharyngeal, and rectal swabs for Direct Fluorescent Antibody (DFA) 24-48 hours after birth if suspect exposure
 - Culture of vesicle scrapings when lesions are present
 - DFA of vesicle scrapings
 - PCR: detect HSV-DNA in CSF

Hypoglycemia

- Inadequate glycogenolysis:
 - cold stress, asphyxia
- Inadequate glycogen stores:
 - prematurity, postdates, intrauterine growth restriction, small for gestational age (SGA)
- Increased glucose consumption:
 - asphyxia, sepsis, polycythemia
- Hyperinsulinism:
 - Infant of Diabetic Mother (IDM)
Hypoglycemia

- Treatment
 - Early feeding when possible (breastfeeding, formula, oral glucose)
 - If glucose < 35 or infant symptomatic, give intravenous glucose bolus (D10 @ 2-3 ml/kg)
 - Following bolus infusion, a continuous IV infusion of D10 is often required to maintain normal glucose levels

Hyperbilirubinemia

- Increased red cell mass and breakdown
- Increased enterohepatic circulation
- Delayed/abnormal conjugation
- Abnormal excretion

Increased bilirubin load

- Elevated hemoglobin level, RBC mass
 - Polycythemia
- RBC degradation due to shorter RBC half-life
 - 70 days (preterm infants), 70-90 days (term infants) vs 120 days in adults
- Extravasated blood: cephalohematoma, caput/bruises, swallowed blood, intracranial or intra-abdominal hemorrhage
- Effects of plasma albumin-bilirubin binding
 - Newborns have lower albumin levels → lower bilirubin-binding capacity → increased risk of acute bilirubin encephalopathy

Unconjugated hyperbilirubinemia: increased breakdown

- Hemolysis
 - Incompatibility: ABO, Rh, minor blood groups (Kell, Duffy) [Antibody screen, DAT]
 - Enzyme defects: G-6-PD, pyruvate kinase
 - Sepsis
 - RBC membrane defects: Hereditary spherocytosis
 - Extravascular blood
Clinical findings suggesting hemolysis
- Onset of jaundice in 1st 24 hours
- Rapid rate of rise of bili (>0.5mg/dL per hour)
- Hepatosplenomegaly, pallor
- Family history (G6PD, spherocytosis)
- “set-up” with incompatibility, Coombs (+DAT), elevated reticulocytes, abnormal hemolytic smear

Findings suggesting sepsis or inborn error
- Emesis, lethargy, poor feeding
- Hepatosplenomegaly, tachypnea, temperature instability

Unconjugated hyperbilirubinemia: impaired conjugation
- Delayed/abnormal conjugation
 - Neonatal hepatitis
 - Sepsis
 - Prematurity
 - Breast milk jaundice
 - Hypothyroidism
 - Sepsis
 - Congenital enzyme deficiency eg Crigler-Najjar
 - Metabolic diseases, e.g., galactosemia

Management of indirect hyperbilirubinemia
- Increased susceptibility to neurotoxicity seen with asphyxia, sepsis, acidosis, prematurity, and hemolysis.
 - Treat these infants at lower levels of unconjugated bilirubin.
- When to worry:
 - Jaundice in the 1st 24 hours
 - Rapid rise in TsB >5 mg/dl/24 hrs
 - Porolonged hyperbilirubinemia
 - > 1 week (term) infant
 - > 2 weeks (preterm)
 - Direct bilirubin > 2mg/dl
 - Symptomatic bilirubin encephalopathy

Treatment guidelines (AAP nomogram)
- Treatment based on clinical risk status (well vs ill infant), serum bilirubin level, GA, chronologic age (hrs of life)
- More conservative treatment of preterm infants (< 37 wks with more immature blood-brain barrier), or infants with sepsis or acidosis.
- Phototherapy vs exchange transfusion
Enterohepatic circulation
- Conjugated bilirubin is unconjugated and reabsorbed in gut in fetus
- Enhanced by:
 - Gut sterility (urobilinogen and stercobilinogen)
 - Bowel dysmotility (preterm infants, effects of magnesium or morphine)
 - Ileus
 - Obstruction: atresia, pyloric stenosis, meconium plugs, cystic fibrosis
 - Delayed feeding

Conjugated (direct) hyperbilirubinemia: impaired excretion
- Obstruction to biliary flow: biliary atresia, choledocal cyst, cystic fibrosis, stones
- dark urine (urine + for bilirubin), light colored stools, persistent jaundice (> 3 weeks)
- Hepatic cell injury: syphilis, TORCH infections
- Hepatic dysfunction: E. coli (UTI)
- Toxic effects: hyperalimentation cholestasis
- Metabolic errors: galactosemia
- Chronic “overload”: erythroblastosis fetalis, G-6PD, spherocytosis

Polycythemia
- Hematocrit > 65% on a spun, central venous blood sample
 - Complications associated with hyperviscosity:
 - Plethora, slow capillary fill time
 - Respiratory distress
 - Hypoglycemia
 - Hyperbilirubinemia
 - Irritability, lethargy, poor feeding
 - Cyanosis, heart murmur, and cardiomegaly
 - Seizures and strokes
 - Necrotizing enterocolitis
 - Renal vein thrombosis

Polycythemia: Treatment
- *Symptomatic* neonates with polycythemia, or infants with very high hematocrit (≥ 70%) → dilutional exchange, correcting Hct to approx 55%.

 \[
 \text{Volume of blood} = Wt \text{ (kg)} \times 80 \text{ cc/kg} \times (\text{Hct}_{\text{obs}} - \text{Hct}_{\text{desired}}) \div \text{Hct}_{\text{obs}}
 \]

- Blood is removed through umbilical artery or umbilical venous catheter and normal saline is infused for blood volume replacement (IV, UVC, or UAC).
Bowel Obstruction in the Neonate

- Clinical presentations of bowel obstruction
 - Emesis: Bilious emesis suggests a lesion distal to ampulla of Vater; sporadic emesis suggests partial obstruction, malrotation, duplications, or annular pancreas
 - Failure to pass meconium (although some infants with “high” lesions will pass meconium)
 - Symptoms start soon after birth with high lesions or with complete obstruction, symptoms delayed in lower lesions or partial obstruction
 - Fetal diagnosis: polyhydramnios and fetal u/s

Causes of bowel obstruction in the newborn

Intrinsic:
- Atresia
- Stenosis
- Meconium ileus
- Anorectal malformations
- Volvulus
- Annular pancreas
- Peritoneal bands

Functional:
- Hirschsprung
- Meconium plug ileus

Duodenal atresia

- 70% of neonates have other anomalies: Down syndrome, annular pancreas, cardiac malformation, multiple atresias
- Clinical findings: dehydration with metabolic alkalosis
- Xray findings: “double-bubble” (dilated stomach and dilated proximal duodenum)
- Management: NG tube, correct electrolytes and surgical consultation

Malrotation with volvulus

- Malrotation (8th-10th week) can lead to volvulus
 - Complete obstruction
 - Vascular compromise:
 - gangrene of the gut, peritonitis, sepsis, and shock.
- Infants present with emesis, bowel distention. Intermittent emesis with incomplete obstruction
- Xrays: dilated stomach and duodenum, little air in distal bowel, diagnosis by UGI (barium enema)

Surgical emergency
Hirschsprung’s Disease

- Lower bowel obstruction: agenesis of ganglion cells (Auerbach and Meissner plexuses)
 - Rectal lesion extending in varying degree; in 80-90% patients no extension beyond sigmoid colon
 - Associated w/ Downs (15%), Waardenburg syndrome
 - Delayed meconium passage (>24-48 hrs) in 90% of patients
 - Clinical findings: Abdominal distention, emesis, obstipation
 - Barium enema: narrowing segment, “corkscrew” appearance of colon, delayed clearing of barium
 - Diagnosis: rectal suction biopsy

Meconium ileus (inspissated meconium)

- 90% of patients have cystic fibrosis, 10-15% of CF patients have meconium ileus
- Family history may be helpful
- Abdominal distention and emesis within 48 hrs
- Delayed meconium passage
- 1/3 of patients have volvulus, atresia, meconium peritonitis, pseudocyst, and present earlier
- Xrays: dilated bowel loops, intra-abdominal calcification (peritonitis), no air-fluid levels seen

Meconium plug syndrome

- Etiology: colonic dysmotility?
- Hirschsprung’s disease in 50% of these patients
- Clinical findings:
 - Delayed meconium passage: (24-48 hrs)
 - Abdominal distention, emesis
 - Barium enema is diagnostic and therapeutic

Birth Injuries

- Cephalohematoma
- Caput succedaneum
- Subgaleal hematoma
- Erb’s palsy
- Klumpke’s palsy
- Clavicular fracture
- Phrenic nerve injury with diaphragmatic paralysis
Injuries to the head

Caput: Edema on presenting scalp. Superficial to the periosteum, crossing sutures (vaguely demarcated pitting edema, +/- ecchymosis).

Cephalohematoma: Subperiosteal bleeding from rupture of vessels that traverse from the skull to periosteum. Bleeding limited by periosteal attachments, thus swelling does not cross sutures (tight water balloon to palpation).

Subgaleal hemorrhage: Blood in loose connective tissue, large potential space → enlarging, mobile hematoma → shock (loose water balloon with fluid wave to palpation).

Cephalohematoma and subgaleal associated with skull fracture and hyperbilirubinemia

Brachial plexus injury: Erb’s Palsy and Klumpke’s Palsy

- Incidence of brachial plexus injuries: 1.6 - 2.9 per 1,000 live births
- 45% of brachial nerve injuries associated with shoulder dystocia.

Erb’s palsy:
- Arm adducted, extended, and internally rotated. Absent biceps and Moro reflexes on affected side. Sensation usually preserved.
- Recovery is often spontaneous and may occur within 48 hrs or up to 6 mos.
- Nerve laceration may be permanent palsy.

Klumpke’s palsy:
- Hand grip affected

Differential diagnosis:
- Clavicular or humeral fracture

Neonatal skin conditions

Common newborn dermatologic problems
- Erythema toxicum
- Benign pustular melanosis
- Milia
- Neonatal acne
- Hemangiomata
 - nevus flammeus
 - capillary
 - cavernous
 - mixed
 - port wine stain

Erythema Toxicum

- Yellow papules w/ erythematous macular base, evanescent and found over entire body
- Common in term infants
- Most seen 24-48 hours after delivery; can be seen up to 2 wks of age
- Eosinophil-filled papules
- Unknown etiology, benign, resolves spontaneously
Benign pustular melanosis

- Seen in 4.4% of African-American infants, 0.2% in white infants
- Lesion: superficial pustular lesions that easily rupture leaving a scaly “collar” around hyper-pigmented macules, which fade in weeks to months.
- Lesions in clusters under chin, nape of neck, forehead, also on trunk and extremities
- Lesions are sterile and transient. Not associated with systemic disease.

Pustules w/ scaling “collar” Post-inflammatory hyperpigmentation

Pustules and post-inflammatory hyperpigmentation

Milia Neonatal acne
Hemangiomata

- Strawberry hemangioma:
 - 2.6% of infants (higher in preterm infants)
 - May be seen at birth or develop during 1st few wks of life; 90% seen by 1 mo of life
 - Start as small, discrete, well demarcated lesions. These grow rapidly during infancy, and eventually involute.
 - Infants with large lesions, lesions on the face, eyelids, airway, mouth, or cavernous lesions should be referred.

- Flame nevus
 - Very common, up to 40% of infants
 - “Salmon patch” on nape of neck, on eyelids, between eyebrows
 - Do not grow during infancy and do not completely disappear. Lesions fade and are less noticeable except during crying or exertion