Interventional Radiology in the Management of Complications Following Orthotopic Liver Transplantation

Robert K. Kerlan Jr., M.D.

University of California, San Francisco

UCSF Liver Transplant Symposium
September 27, 2012
Transplant Patients are Different

• Most patients have benign disease and a potential for long-term survival

• Resources (livers and financial) are limited, so every effort must be made to salvage the allograft

• Immunosuppression alters both response to infection and healing process
Orthotopic Liver Transplantation

Anastomoses

- **Systemic venous**
 - Inferior vena caval (whole liver)
 - Hepatic venous (split liver)
- **Hepatic arterial**
- **Portal venous**
- **Biliary**
Orthotopic Liver Transplantation

- All anastomoses are potential sites for stenosis
- If it is a vascular anastomosis it may lead to thrombosis
Frequency of Anastomotic Complications

<table>
<thead>
<tr>
<th>Site</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary</td>
<td>20%</td>
</tr>
<tr>
<td>Hepatic arterial</td>
<td>10%</td>
</tr>
<tr>
<td>Portal venous</td>
<td>2%</td>
</tr>
<tr>
<td>Systemic venous</td>
<td>1%</td>
</tr>
</tbody>
</table>
Choledochocholedochostomy

- Preferred anastomosis
 - Anatomic
 - Preserves sphincteric mechanism
 - Allows retrograde access
 - Avoids bowel surgery
Choledochojejunostomy

- CDCD cannot be performed
 - Sclerosing cholangitis
 - Biliary atresia
 - Duct size mismatch
- Repair a problematic CDCD anastomosis
Biliary Complications

Leak

Obstruction
Bile Leaks

1. Biliary anastomosis

2. Cut edge of liver (reduced size or lobar transplantation)
Incidence of Biliary Complications Post OLT

<table>
<thead>
<tr>
<th>Authors and Reference</th>
<th>Country</th>
<th>Year</th>
<th>n</th>
<th>Follow-up</th>
<th>Graft Right</th>
<th>Graft Left</th>
<th>Technique D-D</th>
<th>Technique Roux-Y</th>
<th>Biliary Complication (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kling et al(^{17})</td>
<td>USA</td>
<td>2004</td>
<td>48</td>
<td>58 mo</td>
<td>1</td>
<td>47</td>
<td>0</td>
<td>48</td>
<td>20.00, 17.00, 33.3</td>
</tr>
<tr>
<td>Dulundu et al(^{18})</td>
<td>Japan</td>
<td>2004</td>
<td>81</td>
<td>664 d</td>
<td>—</td>
<td>—</td>
<td>81</td>
<td>0</td>
<td>14.80, 12.30, 32.0</td>
</tr>
<tr>
<td>Gondolesi et al(^{19})</td>
<td>USA</td>
<td>2004</td>
<td>96</td>
<td>—</td>
<td>96</td>
<td>0</td>
<td>39</td>
<td>53</td>
<td>26.00, 27.00, 34.3</td>
</tr>
<tr>
<td>Chang et al(^{20})</td>
<td>Korea</td>
<td>2005</td>
<td>161</td>
<td>—</td>
<td>18(^{†})</td>
<td>6(^{†})</td>
<td>—</td>
<td>—</td>
<td>9.30, 9.30, 16.1</td>
</tr>
<tr>
<td>Giacomini et al(^{21})</td>
<td>Italy</td>
<td>2006</td>
<td>23</td>
<td>644 d</td>
<td>23</td>
<td>0</td>
<td>16(^{‡})</td>
<td>1(^{‡})</td>
<td>21.73, 21.73, 34.8</td>
</tr>
<tr>
<td>Ramaciatto et al(^{22})</td>
<td>Italy</td>
<td>2006</td>
<td>27</td>
<td>15.4 mo</td>
<td>27</td>
<td>0</td>
<td>16(^{‡})</td>
<td>9(^{‡})</td>
<td>18.50, 7.40, 25.9</td>
</tr>
<tr>
<td>Shah et al(^{23})</td>
<td>Canada</td>
<td>2007</td>
<td>128</td>
<td>23 mo</td>
<td>128</td>
<td>0</td>
<td>64</td>
<td>64</td>
<td>14.80, 17.10, 32.0</td>
</tr>
<tr>
<td>Iwamoto et al(^{24})</td>
<td>Japan</td>
<td>2008</td>
<td>52</td>
<td>565 d</td>
<td>44</td>
<td>8</td>
<td>49</td>
<td>3</td>
<td>11.50, 9.60, 21.6</td>
</tr>
</tbody>
</table>

Average: 17.1, 15.2, 28.7

DD, duct-to-duct anastomosis; Roux-Y, Roux-en-Y hepaticojejunostomy.

Duailibi DF, Ribeiro MAF: *Transpl Proc* 2010;42:517-520
Anastomotic Leaks

CDCD Leak

CDJ Leak
CDCD Anastomotic Leaks

• Drain biloma
• Divert the bile flow
 – Endoscopic stent
 – PTBD if endoscopy fails
 – If T-tube in place:
 • Open T-tube
 • PTBD with external drainage if leak continues with open T-tube

CDCD Leak
CDCD Anastomotic Leaks

- Using this strategy 14/17 (82%) of CDCD anastomotic leaks healed without surgical revision of the anastomosis.

- 3/17 (18%) with complete anastomotic disruption required surgical revision to CDJ.

CDJ Anastomotic Leaks

- Drain biloma
- Divert bile flow (PTBD)
 - Successful treatment less likely (3/9) compared to CDCD leaks
 - Revision of CDJ if leakage continues

CDJ Leak
Cut-Edge Leaks

- Split lobe recipients
- Reduced size transplant
- In the absence of obstruction, most cut-edge leaks will heal with a combination of biloma drainage and biliary drainage
- If leak continues, occlusion with cyanoacrylate glue has been reported to be successful
Anastomotic Strictures

- Most common type of stricture
- Incidence 10%
- Unclear whether more common with CDCD or CDJ
- Likely more technique than site related
CDCD Anastomotic Strictures

• Limited data on the long term results of PTBD with balloon dilatation of CDCD is available
 - Usual approach is endoscopic
 - Early revision to CDJ is successful and durable

• 70% (14/20) patency at mean follow-up of 30.2 months (13-58 mos.) following 1 to 3 transhepatic balloon dilatations of CDCD anastomoses

Righi et al. CVIR 2002;25:30-35
CDCD Anastomotic Strictures

- Long-term (6-months or >) endoscopic stenting successful in 67-75% of patients at 18-month f/u

 Rizk et al. *Gastrointest Endo* 1998;47:128

- Surgical repair has one-year patency ranging from 85-90%

 Boutttier et al. *J Radiol* 1997;78:485-489
CDCD Anastomotic Strictures

- In first three-months following OLT, stricture may represent edema or inflammation
 - Retrograde stent if possible
 - Transhepatic balloon dilation and internal/external stent if retrograde cannot be achieved, and non-operative tx desired

- If greater than three-months following OLT, surgical revision should be considered
Cutting Balloon

• When standard balloon dilatation is insufficient, cutting balloon should be used.

• Cutting balloon may be undersized, followed by conventional balloon.

• Initial cutting balloon.

• Overall technical success rate 93% c/w 85% for conventional balloons.

• Long-term outcome unknown.

Saad et al. *JVIR* 2006;17:837
CDJ Anastomotic Strictures

- CDJ strictures differ from CDCD strictures as operative repair is less successful and less durable.
- Therefore, CDJ strictures should be approached more aggressively with non-operative therapy.
- Cutting balloons can be safely used in CDJ anastomotic strictures.
CDJ Anastomotic Strictures

- Balloon dilatation followed by internal/external stenting for 4 to 6 weeks
 - 73% success at 2-years
 - 66% success at 6-years

n=47 Zajko et al. JVIR 1995;6:79-83
Anastomotic Strictures

Metallic Stents
- Should rarely be used as they may preclude definitive repair

- Anastomotic strictures which fail balloon dilatation
 - Poor surgical candidates
 - Sufficient extra-hepatic bile duct for “rescue” revision
 - Last resort

Living Donor or Split Liver Transplantation

• Biliary complications occur more frequently following LDLT (22% to 64%)
 Giacomoni et al. *Trans Int* 2006;19:466

• Originally most anastomoses were right hepaticojejunosotomies

• Right hepatic to right hepatic or right hepatic to common hepatic ductal anastomoses are becoming much more frequent
Living Donor or Split Liver Transplantation

- If a variant duct (usually the right posterior) is present, it may be intentionally ligated by the transplant surgeon.

- Inadvertent puncture and drainage of a ligated duct is a major medical error.
Major Medical Error

- Drainage of this ligated ductal system should be avoided to prevent long-term external drainage tube
Non-Anastomotic Strictures

- Hepatic artery thrombosis (1/3rd)
- ABO incompatibility
- Prolonged preservation
- Ductopenic Rejection
- Recurrent PSC or tumor
- CMV infection?
Non-Anastomotic Strictures

Balloon dilation results

- 16 patients with non-anastomotic strictures
 - 94% success rate @ two-years
 - 84% success rate @ five-years

Zajko et al. JVIR 1995;6:79-83
Non-Anastomotic Strictures

Reasonable approach

- Patients with minimal symptoms and preserved synthetic function should not be treated.

- Balloon dilatation should be the primary treatment for symptomatic patients.

- Stents should be reserved for failures of dilatation and used as a bridge to retransplantation.
Vascular Complications

Locations
• Hepatic Artery
• Portal Vein
• Hepatic Vein / IVC

Sources
• Intimal hyperplasia
• Torsion
• Technical
Hepatic Arterial Complications: Incidence

- Stenosis (HAS) 12%
- Thrombosis (HAT) 5%
- Pseudoaneurysm < 1%
 - Infected (mycotic)
 - Uninfected (technical)
Hepatic Artery Stenosis

- Cholangiographic abnormalities are present in 60%
 - Non-anastomotic biliary strictures
 - Biliary obstruction secondary to sludge and debris
- PTA should be initially attempted
- Arterial stents should be placed for unsuccessful dilatation
- Despite a successful endovascular technique, the majority of patients require retransplantation
Hepatic Artery Stenosis: PTA
Hepatic Artery Stenosis: PTA
Results

- Approximately 50 reported cases
- Technical success 80% to 90%
- Physiologic improvement 40% to 60%
- Retransplantation Frequent

Hepatic Artery Stenosis: Stent
Hepatic Artery Stenosis: Stent

Results

- Significant numbers of patients lacking
- Patency up to 25 months have been reported

Hepatic Artery Pseudoaneurysm - Uninfected
Hepatic Artery Pseudoaneurysm - Uninfected
• Incidence 2%
• If thrombosis occurs within one-month of transplant, hepatic dysfunction and hepatic failure may be observed
• If stenosis or thrombosis occur later, sequelae of portal hypertension (bleeding, ascites and encephalopathy) are usually presenting symptoms
• Diagnosis is usually made by surveillance ultrasound
Portal Venous Stenosis / Thrombosis: Therapy

• Acute thrombosis has been treated with fibrinolytic therapy and mechanical thrombectomy (<20 cases reported- 80% success)

• Symptomatic portal vein stenosis
 – PTV
 – Stent placement
Portal Vein Stenosis
Portal Vein Stenosis: PTV
Systemic Venous Complications

- Incidence: <1%
- Locations:
 - IVC
 - Hepatic venous
 - Combined IVC / HV
- Symptoms:
 - Supra-hepatic or hepatic vein in split liver tx give rise to Budd-Chiari with ascites, portal hypertension and mild hepatic dysfunction
 - Infrahepatic IVC stenoses lead to LE edema
- Treatment: PTV and stent
Systemic Venous PTV
Systemic Venous Complications
Hepatic Venous Stenosis
IVC Stenosis / Occlusion Post OLT
Post-Liver Transplant Interventions

• The overall success rate of a liver transplantation program is strongly correlated with available interventional radiology expertise

• Transplant patients do not have the same immune and healing responses as non-immunosuppressed patients
 – More likely to leak
 – More likely to develop infections

• However, re-operations on this patient population for anastomotic revision is often difficult, therefore an aggressive percutaneous approach is often warranted