FHR Decelerations: Pathophysiology and Management

Sarah Kilpatrick MD, PhD
Professor and Helping Hand of Los Angeles Chair
Department of Obstetrics and Gynecology
Cedars-Sinai Medical Center

FHT Monitoring Objectives

- Understand pathophysiology of variable decelerations
- Understand pathophysiology of late decelerations
- Be able to list types of variability
- List 2 patterns with high association with fetal metabolic acidosis

NICHD Definitions 1997

- Baseline FHT
 - evaluate over 10 minutes
 - minimum must be at least 2 minutes
 - 110’s - 160 normal
 - > 160 for at least 10 minutes: tachycardia
 - < 110 for at least 10 minutes: bradycardia

Variability

- Absent
- Decreased (minimal): amplitude > undetectable but < 6 bpm
- Normal (moderate): amplitude 6 - 25 bpm
- Increased (marked): amplitude > 25 bpm

NICHD, 1997
EFM as Screening Test

- Strength of test is in the normal response
 - Way < 1% chance of metabolic acidosis
- Weakness of test is in the abnormal response
 - Not that high association with metabolic acidosis except in 4 patterns

Variable Decelerations

- Abrupt decrease: onset to nadir < 30 seconds
- ≥ 15 bpm below baseline
- Lasts ≥ 15 seconds but < 2 minutes from onset to return
- Nothing about contraction association in definition

Late Decelerations

- Gradual decrease: onset to nadir ≥ 30 seconds
- Associated with contraction
- Delayed in timing with onset, nadir, recovery occurring after beginning, peak, ending of contraction in most cases
Late Decelerations

- Late deceleration with normal variability
- Not as worrisome as lates with decreased or absent variability
Prolonged Deceleration

- > 15 bpm below baseline lasting 2 - 10 minutes
- Bradycardia: < 110 bpm lasting > 10 minutes

NICHD, 1997

Physiology of FHT

- Rate controlled by vagus (parasympathetic)
 - Stimulate vagus: bradycardia
- Variability controlled by vagus, midbrain and cortex
 - Normal variability requires intact pathway between cortex, midbrain, vagus, cardiac conduction system

Normal Variability

- Strongest indicator adequately oxygenated cortex
- If present fetus does not have a metabolic acidosis
Interpretation of EFM

- True positive: abnormal equals metabolic acidosis
- False positive: abnormal but gas is normal
- True negative: normal tracing and normal gas
- False negative: normal tracing and metabolic acidosis

DeLee, 1947

- Contractions begin FHT beats faster
- During height of pain FHT are slow
- More pronounced after rom
- Blood driven out of placenta causes stimulation carotid sinus and depressor nerves of aorta
- When child in danger: FHT very fast, very slow, or irregular

Pathophysiology of Variables

- Response to cord compression
- UAs compresses first, reduces blood flow from fetus to intervillus space
- Fetal baroreceptors triggered by increase in TPR
- Vagus stimulated
- Immediacy of response reflected in shape, timing
Pathophysiology of Lates

- Response to uteroplacental insufficiency, decreased uterine blood flow, exchange O2, CO2
- Chemoreceptors fire if threshold for PO2 or PCO2 reached
- Takes time to reach threshold to fire chemoreceptor explaining timing and shape of late decel

Pattern Evolution

- Variability becomes decreased before significant fetal acidemia present
- Variability as long as brain well oxygenated
 » reflex lates
- Decrease in to absent variability as oxygenation of brain worsens
 » seen as lates with decreased to absent variability
- Usually change occurs gradually

How Much Time Do You Have?

- Most difficult question
- Really no data to help except in extremes
 » normal FHT
 » 4 asphyxial patterns
- Continuum
G2P1 38 wks labor

To OR

Forces placed on
Interventions for Variant Patterns

- Think pathophysiology
- Always try to make any recurrent decelerations go away

Patterns with Highest Association with Metabolic Acidosis

- Absent variability with repetitive decelerations
- Bradycardia with absent variability
- Bradycardia < 80
2nd Stage FHT and Metabolic Acidosis

- 601 low risk singletons
- Initially normal tracing
- Acidosis defined as pH < 7.2 and BE ≤ -12
 - 28/601 (5%)

Frequencies of Pathologic FHTs

<table>
<thead>
<tr>
<th>Factor</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables ≥ 70</td>
<td>264</td>
<td>62.8</td>
</tr>
<tr>
<td>Variables < 70</td>
<td>36</td>
<td>8.6</td>
</tr>
<tr>
<td>Lates</td>
<td>20</td>
<td>4.8</td>
</tr>
<tr>
<td>Brady ≥ 70</td>
<td>55</td>
<td>13.1</td>
</tr>
<tr>
<td>Brady < 70</td>
<td>21</td>
<td>5.0</td>
</tr>
<tr>
<td>D variability</td>
<td>43</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Sheiner, 2001

Sheiner, 2001 2nd stage
PH <7.2 BE ≥ 12

<table>
<thead>
<tr>
<th>Factor</th>
<th>OR</th>
<th>CI</th>
<th>P</th>
<th>OR</th>
<th>CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>5.1</td>
<td>1.4,21</td>
<td>.008</td>
<td>3.5</td>
<td>0.8,15</td>
<td>.1</td>
</tr>
<tr>
<td>≥ 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>16.3</td>
<td>3.8,80</td>
<td>.001</td>
<td>10.5</td>
<td>1.9,56</td>
<td>.006</td>
</tr>
<tr>
<td><70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lates</td>
<td>15.2</td>
<td>2.8,91</td>
<td>.001</td>
<td>17.3</td>
<td>2.9,101</td>
<td>.002</td>
</tr>
<tr>
<td>Brady ≥ 70</td>
<td>2.3</td>
<td>0.3,17</td>
<td>.3</td>
<td>3.8</td>
<td>0.3,44</td>
<td>.28</td>
</tr>
<tr>
<td>Brady < 70</td>
<td>26.6</td>
<td>5.2,150</td>
<td>.001</td>
<td>5.2</td>
<td>0.8,31</td>
<td>.007</td>
</tr>
<tr>
<td>D variab</td>
<td>2.2</td>
<td>0.3,17</td>
<td>.7</td>
<td>5.1</td>
<td>0.6,46</td>
<td>.1</td>
</tr>
</tbody>
</table>

N=57, pH n=28 BE

Pathologic FHT In 2nd Stage

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lates</td>
<td>3.9</td>
<td>1.1,13.1</td>
<td>.03</td>
</tr>
<tr>
<td>Abnorm 1st stage</td>
<td>3.4</td>
<td>1.3,8.7</td>
<td>.01</td>
</tr>
<tr>
<td>Brady < 70</td>
<td>3.0</td>
<td>1.02,8.6</td>
<td>.045</td>
</tr>
<tr>
<td>Brady ≥ 70</td>
<td></td>
<td>5.2,31</td>
<td></td>
</tr>
<tr>
<td>D variab</td>
<td></td>
<td>0.6,46</td>
<td></td>
</tr>
</tbody>
</table>

pH < 7.2, BE of 12 (n = 28).

Multivariate, sheiner, 2001

34 wk preeclampsia
Variables

- **Cause**
 - cord compression
 - head compression second stage
- **Interventions**
 - position change
 - amnioinfusion
 - push every other contraction

Parer, king; 1999
Lates

- **Cause**
 - decreased uterine blood flow to trigger threshold
- **Interventions**
 - position change
 - IV fluid
 - maternal hyperoxia
 - decrease contraction frequency, tocolytic
 - increase maternal blood pressure
 - Effectiveness dependent on variability

G4P2 2 prior stillbirths 29 wks decreased FM
G5P1 30 wks IUGR, oligo, breech, reverse diastolic flow
Bradycardia

- **Cause**
 - hypotension, hyperstimulation
 - terminal
- **Interventions**
 - position change
 - IV fluids
 - correct maternal blood pressure
 - decrease contractions
 - deliver

34 wks, dudenal atresia, 3 cm
Documentation

- Variability
- Baseline FHT
- Accelerations
- Decelerations
 - type, repetitiveness, severity
- Pattern evolution
- Clinical associations
- Urgency: any notification

Conclusions

- Purpose FHT monitoring
 - Reduce asphyxial damage
 - Reduce metabolic acidosis
 - Without doing unnecessary cesareans
- Requires
 - Collaborative approach (RN, CNM, MD)
 - Excellent communication
 - Trust

Avoid terms such as nonreassuring or fetal distress unless you are moving asap to delivery
- Describe
- If variant pattern emphasize what is reassuring