Surgical Management of Presbyopia

Stephen D. McLeod, MD
Theresa M. and Wayne M. Caygill, MD Endowed Chair
Professor and Chairman
Department of Ophthalmology
University of California San Francisco

Optimizing Visual Function with Multifocal IOLs

- Multifocal IOLs: split available light between distance and near focus
- Contrast of object of interest is affected by the attendant defocus, which affects contrast sensitivity
 - Refractive
 - Diffractive
- Enhance function by reducing spherical aberration and residual astigmatic defocus

AcrySof IQ ReSTOR Multifocal Toric IOL

- Alcon, FW Texas
- Not available in the US
- UV and blue filtering
- Diffractive aspheric toric
- Cylinder powers 1, 1.4, 2.25, 3 D
- Sparse clinical data

Acknowledgements

- The presenter had in the past a financial interest in the subject matter of this presentation (Visiogen Inc.; now AMO)
 - Founding stock
 - Research support
- Some devices discussed are under FDA investigation, and are unavailable for general use
Oculentis Multifocal Toric

- Lentis Mplus toric IOL, Oculentis GmbH
- One piece multifocal toric IOL
- Sector-shaped near vision segment
- 3D add
- Sparse clinical data. Study comparing stray light and symptoms between refractive, diffractive and near segment suggested greatest halos in refractive designs

PresbyLasik

- Use laser to induce multifocality in cornea
 - Multifocal
 - decentered hyperopic profile
 - Significant vertical coma
 - Center distance, midperiphery near
 - Relies on negative peripheral asphericity
 - Miosis with accommodative effort counters effectiveness
 - Esp. in myopic correction, large volume of tissue removal
 - Hyperpositive center near, peripheral distance
 - Minimal tissue removal
 - Better performance with small pupil or miosis
 - Associated with high risk of induced coma due to alignment challenges

Rayner M-flex T Multifocal IOL

- Rayner, East Sussex, UK
- Multizone refractive aspheric lens
- 4 or 5 annular zones
- +3 or +4 giving +2.25 or +3D at spectacle plane
- Outer haptics absorb initial capsule contraction
- Engage inner haptics to stabilize lens

AT Lisa toric IOL

- Previously called the Acri.Lisa toric 466TD, Carl Zeiss Meditec AG
- Diffractive multifocal aspheric IOL
- 65% to distance, 35% to near
- +3.75 add
- Hydrophilic acrylate with hydrophobic surface
- 11 mm diameter, 6.0 mm optic, 0 degrees angulation
- Cylinder from 1 to 12 D in 0.50 D increments
- Custom made, 6-8 wks
- 50% moderate glare and halo
IntraCor

- Technolas Perfect Vision, Munich, Germany
- Femtosecond intrastromal concentric cylindrical tissue ablation
- Produces hyperprolate cornea; steeper center produces myopic shift
- Proposed that avoidance of tissue removal required by excimer ablation reduces risk of ectasia
- Femtosecond tool to reproduce Hexagonal keratotomy

Femtosecond Laser-Assisted Lens Modification

- Finite element modeling suggests cleavage planes that can allow lens fiber sliding and enhanced flexibility
- Primate and minipig studies suggested only focal lens opacities
- Krueger: 14 patients planning cataract extraction treated in Philippines, measured at 1 month
 - 0.25D change in subjective and objective accommodation seen at 1 month
- Attempt prior to refractive lens exchange?

Intracorneal Implants

- Flexivue Microlens (Presbia, Los Angeles, CA)
- Kamra (AcuFocus, Irvine, CA)
- Vue+ (Revision Optics, Lake Forest, CA)

- Flexivue Microlens (Presbia, Los Angeles, CA)
 - Hydrophilic polymer refractive implant
 - 3mm diameter, 15µ thick
 - Placed at 280-300µ
Intracorneal Implants

- **Flexivue Microlens (Presbia, Los Angeles, CA)**
 - Hydrophilic polymer refractive implant
 - 3mm diameter, 15µ thick
 - Placed at 280-300µ

- **Kamra (AcuFocus, Irvine, CA)**
 - Pinhole increase in depth of focus
 - 5µ thick, 3.8mm diameter, 1.6mm opening
 - Microperforations 5-11µ
 - Placed at 170µ

- **Vue+ (Revision Optics, Lake Forest, CA)**
 - Hydrogel implant to steepen cornea
 - 2mm diameter
 - Placed at 120-130µ