The Pediatric Optic Nerve

Alejandra de Alba Campomanes, MD MPH
Assistant Professor of Ophthalmology,
Division of Pediatric Ophthalmology and Strabismus
University of California, San Francisco
Director of Pediatric Ophthalmology and Strabismus
San Francisco General Hospital

Optic nerve abnormalities in children

- Poor vision and nystagmus / esotropia
- Systemic disease
- Early/accurate diagnosis important

- To present recent relevant information that may aid in the diagnosis of optic nerve abnormalities in children

Case 1

- 3 yo girl referred because of failed vision screening
- VA Allen pictures: 20/30 OD and 20/100 OS
- No strabismus
- + APD OS

Optic nerve hypoplasia

Double ring
How small is too small?

- DD/DM ratio: normal >0.35; hypoplasia <0.30

Small ON \neq hypoplasia

Further work-up?

- A. none, this is unilateral hypoplasia
- B. none, no history of seizures, dev. delay jaundice, or hypoglycemia
- C. MRI brain first. If normal no other work-up necessary
- D. Endocrinology evaluation

Systemic associations

- Isolated (rare)
- Maternal diabetes: segmental superior ONH
- Septo-optic dysplasia (de Morsier Syndrome):
 - absence of the septum pellucidum,
 - pituitary abnormalities, (40-70%)
 - hypoplasia of corpus callosum
 - Other brain malformations (schizencephaly, leukomalacia, encephalomalacia)

MRI of brain

- Reliable predictor of pituitary gland function?
 - Retrospective study* 67 children with ONH
 - Sensitivity 88%
 - Neg Predictive Value $\Rightarrow (D' | \overline{T})$ 93% (PPV 100%)
 - Prospective study ** 47 children
 - 35% w/endocrine abnormalities had MRI abnormalities
 - No association between radiological abnormality and endocrinopathy ($p=1.00$)
 - Normal MRI does not completely rule out an endocrinological abnormality!

*Phillips et al. JAPOS 2011;5:275-80
Endocrinopathies

- Congenital hypopituitarism
 - Most common:
 - growth hormone (70%)
 - hypothyroidism (43%)
 - adrenal insufficiency (27%)
 - diabetes insipidus (5%)
 - multiple deficiencies

Pituitary dysfunction

- ↓GH → Impaired growth (not until age 4/PRL)
- ↓TSH → jaundice, developmental delay
- ↓ACTH → hypoglycemia, hypotension, seizures
- ↓FSH/LH → precocious or delayed puberty
- ↓ADH → Diabetes insipidus

- Test: provocative GH secretion, provocative cortisol secretion, water deprivation test, IGF-I, IGF-B3, T3, T4, TRH, TSH

Unilateral vs. Bilateral ONH

- Bilateral more common (75-85%)

- Similar risk of endocrine abnormality
 (80% bilateral/70% unilateral)

- Bilateral: poor vision/nystagmus
- Unilateral: strabismus, anisometropia
Case 2

- 2 year-old girl, referred for amblyopia OS
- Vision LEA: 20/30 OD, LP OS
- +APD OS
- Microphthalmia OS
- Posterior lens opacity OS with persistent hyaloid artery
- Left ON excavated

Congenital excavations of the ON

- Optic Nerve Coloboma
- Morning Glory Disc Anomaly
- Optic Disc Pit
- Peripapillary staphylomas
- Megalopapilla
- Bilateral Cavitary ON anomalies + Multiple Cilioretinal Vessels (Papillorenal syndrome)
- PVL

Morning Glory Disc Anomaly
Morning glory disc anomaly

MGDA vs. ON Coloboma

- Defect in posterior sclera and lamina cribosa with herniation of neural tissue
- Sporadic
- Unilateral
- Contractile elements
- Persistent hyaloid vasculature
- Risk of serous RD
- Hypertelorism, cleft lip/palate, basal encephalocele, corpus callosum agenesis, Moyamoya, PHACE

- Failure of embryonic fissure to close
- Unilateral or bilateral
- 20% AD, sporadic
- Coexistent ocular malformations
- Risk of serous RD, peripapillary CNV
- CHARGE (CHD7)/branchio-oculo-facial syndrome (TFAP2A)

Coloboma
Moyamoya Disease

MGDA Systemic associations

- Transsphenoidal basal encephalocele (herniation of sella contents into sphenoidal sinus)
- Moyamoya Disease (CNS vasculopathy with progressive stenosis of the internal carotids)
- MRI/MRA or CTA

Optic Nerve Pit

Scott RM, Smith ER. Moya Moya Disease. NEJM 2009;360:1226

Herniation of dysplastic retina into collagen pocket

6 year old male w/ GH deficiency
Both parents had normal exam
Optic nerve swelling

12 year-old with diplopia, HA, nausea, vomiting
VA 20/30 OD, 20/20 OS
15° ET/ 6° ET'

Brain MRI

Papilledema

14 year-old girl with syncope, blurry vision, HA, vomiting
VA 20/30 OD, 20/50 OS
Case # 3

- 22 month-old male
- Referred for intermittent crossing x 1 month
- PMH: Mild anemia. No recent ear infections, no fever, nausea, vomiting or headache.
- Meds: iron

- Variable angle L ET 0-30°
- Full EOM (no abduction deficit)
- No APD
- CRet: +4.00+0.50x90 OU
Lumbar puncture

- Under moderate sedation (propofol/sevo)
- Side w/ legs extended
- Opening pressure was 22 cm H₂O

- Normal OP in children → >20 cm H₂O

CSF opening pressure in children with optic nerve head edema

- Matched case-control study (N=41/group)
- Range of OP in children with/without ONHE

<table>
<thead>
<tr>
<th></th>
<th>ONHE</th>
<th>No ONHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>41.4</td>
<td>18</td>
</tr>
<tr>
<td>Range</td>
<td>22-56</td>
<td>9-29</td>
</tr>
<tr>
<td>>28 cm H₂O</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td><28 cm H₂O</td>
<td>1</td>
<td>39</td>
</tr>
</tbody>
</table>

NPV=97.5% PPV=95.3%

Reference Range for Cerebrospinal Fluid Opening Pressure in Children

- Prospective study of 197 children 1-18 years (without papilledema)
- 11.5-28 cm H₂O (10-90th percentile)
- Moderate-deep sedation- higher OP

<table>
<thead>
<tr>
<th>No Sedation</th>
<th>Minimal Sedation</th>
<th>Moderate to Deep Sedation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Frequency</td>
<td>Frequency</td>
</tr>
</tbody>
</table>

A

B

97.6% >28 cm H₂O

2 patients >28 cm H₂O
• Both parents examined.
• Mother had dysplastic appearance of the left ON.

Conclusions

• Important to recognize subtle characteristics of the different pediatric optic nerve abnormalities
• Dictate work-up/ diagnose systemic disease
• Avoid unnecessary tests
• Guide treatment
• Complete eye exam, knowledge PMH/ROS, examination of both parents → Dx.
• Ancillary testing: ON photos, OCT, B-scan, MRI/MRA

Thank you!
Optic Nerve Head Drusen

OCT & Optic Nerve Head Drusen

From Differentiating Optic Disc Edema From Optic Nerve Head Drusen on Optical Coherence Tomography
Lenworth N. Johnson, MD; Meredith L. Diehl, MD; Chuck W. Hamm, COT, CRA, OCT C; Drew N. Sommerville, MD; Gregory F. Petroski, PhD
OCT papilledema

OCT drusen

Son-mNLF, papilledema, Drusen?
MNFL-mother

MRI other signs
Empty Sella