Ligament Injuries to the Knee

C. Benjamin Ma, M.D.
Associate Professor
Chief, UCSF Sports Medicine and Shoulder
Department of Orthopaedic Surgery
University of California, San Francisco

Knee Ligaments

6 Degrees of freedom of knee motion

- Flexion/Extension
- Varus/Valgus Rotation
- Internal/External Rotation
- Anterior/Posterior Translation
- Medial/Lateral Translation
- Proximal/Distal Translation

Different injury mechanism gives you different injuries
Common Knee Injuries

ACL injury
- Contact or noncontact injury
- Acute swelling
- Instability or giving out sensation
- Can be associated with MCL and meniscus injuries

ACL Injury
ACL tear

- Lachman test
- Anterior drawer
- Pivot shift test

ACL tear

- Operative
 - Young active individual
 - Instability
 - Protect menisci
- Non-operative
 - Older individual
 - No cutting sports
 - Hamstring strengthening / reeducation

PCL Injury

Mechanisms:
- Direct anterior blow to proximal tibia
 - falling directly on knee/dashboard injury
- Hyperflexion
 - fall on flexed knee with foot plantar-flexed
- Hyperextension
- Knee Dislocation (other ligaments involved)
POSTERIOR DRAWER TEST

- Hip flexed at 45°, knee flexed at 90°
- With both thumbs placed on the joint line, the tibia is gently pushed posteriorly.
- Excursion of the tibia is compared with the unaffected side.

PCL Injury

- Isolated PCL tear
 - Most often treated non-operatively
 - Can have arthritis/ meniscus tear down the road
- Multi-ligament injury
 - Most often operative treatment
 - Can be staged
 - May need osteotomy
PosteroLateral Corner Injury

- Lateral collateral ligament, popliteus tendon, popliteofibular ligament

Mechanisms
- Isolated injury rare
 - usually injury occurs with PCL or multiligament injury
- Knee hyperextension with varus stress
 - posterolateral force to knee
- Severe varus stress or ext. rotation of tibia

VARUS STRESS TESTS

- Varus stress is applied both in full extension and in 20-30° of flexion
- Test in extension checks for injury of posterolateral corner structures
- Test in flexion evaluates LCL
- Grading of Injury based on Jt. Space opening:

 Grade I: 0 to 5 mm
 Grade II: 6 to 10 mm
 Grade III: 11 to 15 mm
Posterolateral Corner Injury

- For acute complete rupture
 - Want to treat this **operatively** within 3 weeks of injury
- Repair is better than reconstruction
- Reconstruction for more chronic injuries (>3 weeks) or more severe injury

 Don’t want to miss this one!

MCL Injury

Mechanisms:
- Valgus force applied to the flexed knee
- Injuries mostly at the medial femoral condyle
- Can be associated with tears of the PM capsule, the ACL, and the medial meniscus
- Contusion/ fx of the lateral femoral condyle or lateral tibial plateau is common

Symptoms
- Pain along the MCL
- More common on the femoral insertion
MCL Injury

- Most injuries treated non-operatively
- Heals very well
- Treat with protected brace and protected weight-bearing
- Chronic instability
 - MCL reconstruction
 - Concern with knee stiffness

VALGUS STRESS TESTS

- Valgus stress is applied both in full extension and in 20-30° of flexion
- Test in extension checks for injury of posteromedial corner structures
- Test in flexion evaluates MCL
- Grading of Injury based on Jt. Space opening:
 - Grade I: 0 to 5 mm
 - Grade II: 6 to 10 mm
 - Grade III: 11 to 15 mm

MCL injury

- Shock absorbers of the knee
 - Acute injuries
 - Degenerative injuries
- Mechanisms:
 - Rotation of the femur against a fixed tibia during flexion and extension (twisting injury)
 - History of twisting, squatting, or cutting
- Clinical signs:
 - Joint line pain, giving way, clicking, and effusions.
 - Locking of the joint in fixed flexion may occur after displacement of a meniscal fragment

Meniscus Injury

- Shock absorbers of the knee
 - Acute injuries
 - Degenerative injuries
- Mechanisms:
 - Rotation of the femur against a fixed tibia during flexion and extension (twisting injury)
 - History of twisting, squatting, or cutting
- Clinical signs:
 - Joint line pain, giving way, clicking, and effusions.
 - Locking of the joint in fixed flexion may occur after displacement of a meniscal fragment
Meniscus Injury

JOINT LINE TENDERNESS

- Palpation of the anterior, middle, and posterior parts of both the medial and lateral joint spaces.

Fowler and Lubliner, 1989

<table>
<thead>
<tr>
<th>SENSITIVITY</th>
<th>SPECIFICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>85%</td>
<td>30%</td>
</tr>
</tbody>
</table>
MCMURRAY’S TEST

- Knee is flexed and placed in external rotation
- Examiner applies a valgus or varus force
- Knee is then extended.
- (+) = Pain and/or a popping/snapping sensation.

<table>
<thead>
<tr>
<th>SENSITIVITY</th>
<th>SPECIFICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>29%</td>
<td>96%</td>
</tr>
</tbody>
</table>

Fowler and Lubliner, 1989

Meniscal Tear Treatment

- Treatment based on mechanical symptoms of patient (PT)
- If meniscal tear disrupts mechanics of knee and patient does not respond to physical therapy, surgery is indicated
- Surgical options: Debridement (remove as little as possible) vs Repair
Meniscus Injuries and Repair

Mechanism:
- Femoral internal rotation on a fixed, externally rotated tibia often a twisting injury
- 38% during athletics
- Direct blow to knee
- Acute hemarthrosis

Patellofemoral Instability

Mechanism:
- Femoral internal rotation on a fixed, externally rotated tibia often a twisting injury
- 38% during athletics
- Direct blow to knee
- Acute hemarthrosis
MRI - PF Instability

- Torn medial patellofemoral ligament
- Osteochondral fracture

Patella Dislocation

- First time dislocation
 - Most often non-operative rx
 - Operative treatment
 - If there are loose fragments or fractures
 - Avulsion injuries
- Immobilize with brace for first 3-4 weeks, then start ROM
- Avoid cutting sports early on

Quadriceps Rupture

Mechanisms:

- Indirect Trauma: forced/eccentric muscle contraction with foot planted and knee flexed
- Typically patients older than 40 years
- 3X more common than Patella tendon ruptures
- Bilateral ruptures can occur
 - Usually for patients with chronic disease or steroid use
- **Normal tendons** do not rupture under stress loading
Quadriceps Rupture

- Extensor lag on straight leg raise
- Tenderness at superior pole of patella
- Patella may be displaced inferiorly or is sitting low
- Swelling, bruising

Quadriceps Rupture

- Extension Lag

Quadriceps Rupture

- Palpable Quad defect near patellar insertion, patella can be displaced inferiorly
Quadriiceps rupture
- Goal is to restore strength, gait
- Surgical repair
- Operative – no role for non-operative treatment

Patellar Tendon Rupture
- Mechanisms:
 - Direct Trauma most common cause
 - Typically patients younger than 40 years
 - Bilateral ruptures can occur
 - Avulsion injuries from the inferior pole of the patella > tibial tubercle
 - Midsubstance ruptures unusual
 - Normal tendons do not rupture under stress loading (often a history of pain)

Patellar Tendon Rupture
- Extensor lag on straight leg raise
- Tenderness at inferior pole of patella
- Patella can be displaced superiorly or is sitting high
- Swelling, bruising
Patella Tendon Rupture
- No role of non-operative treatment
- Acute loss of extensor function
 - Operative intervention
- Brace for 8-10 weeks
- Rehabilitation

Knee extensor injuries
- Osgood Schlatter’s Disease
 - 10-16 years old
- Patella tendinitis
 - 20-30 years old
- Patella tendon rupture
 - 30-40 years old
- Quadriceps tendon rupture
 - 40-60 years old

Knee Ligament Injuries
- Palpation - Pain can tell you where the injury is
- Acute swelling – injury
 - Immediate swelling
 - ACL/PCL
 - Patella dislocation
 - Fractures
 - Delayed swelling – 24 hours
 - Meniscus
 - Localized swelling
 - MCL

Don’t Miss
- Dislocated knee
- Lateral sided injury
- Extensor mechanism injuries
 - Active extension
 - Not just straight leg raise